Et profilbilde

Aleksi Kurkela { "honorific-suffix": "Ekstern", "fn": "Aleksi Kurkela", "tel": "", "email": "" }

Faculty Faculty of Science and Technology
Department Department of Mathematics and Physics

Courses taught

Research fields

I study how ordinary matter behaves in extraordinary conditions.
Ultrarelativistic nuclear collisions in modern particle colliders -- such as the LHC at CERN -- smash together atomic nuclei creating a fireball so hot (about a million times the temperature of the core of the sun!) that protons and neutrons melt to their fundamental constituents and a new form of elementary particle matter, Quark Matter, is created. This soup of elementary particles filled the universe when it was in its infancy and it has been conjectured that it may be found in the cores of the most dense astrophysical objects, in the cores of neutron stars. 

How quark matter behaves and under which conditions it is formed is governed by the fundamental theory of Quantum Chromodynamics  or QCD -- the part of the Standard Model of particle physics responsible for the strong nuclear interactions. My research utilises QCD to model the nuclear collisions and cores of neutron stars and leverages the synergies between particle physics and astrophysics. 

Selected publications

On phenomenology of neutron stars and quark matter:

  • E. Annala, T. Gorda, A. Kurkela, J. Nättilä and A. Vuorinen, Evidence for quark-matter cores in massive neutron starsNature Phys. (2020), [arXiv:1903.09121 [astro-ph.HE]]. 
  • T. Gorda, A. Kurkela, P. Romatschke, M. Säppi and A. Vuorinen, Next-to-Next-to-Next-to-Leading Order Pressure of Cold Quark Matter: Leading LogarithmPhys. Rev. Lett. 121 (2018) no.20, 202701,  [arXiv:1807.04120 [hep-ph]].
  • E. Annala, T. Gorda, A. Kurkela and A. Vuorinen, Gravitational-wave constraints on the neutron-star-matter Equation of StatePhys. Rev. Lett. 120 (2018) no.17, 172703, [arXiv:1711.02644 [astro-ph.HE]].
  • A. Kurkela and A. Vuorinen, Cool quark matterPhys. Rev. Lett. 117 (2016) no.4, 042501[arXiv:1603.00750 [hep-ph]].

On far-from-equilibrium quantum fields and thermalization:

  • D. Almaalol, A. Kurkela and M. Strickland, Non-equilibrium attractor in high-temperature QCD plasmas, Phys. Rev. Lett. 125 (2020) no.12, 122302, [arXiv:2004.05195 [hep-ph]]. 
  • A. Kurkela, W. van der Schee, U.A. Wiedemann and B. Wu, Early- and Late-Time Behavior of Attractors in Heavy-Ion Collisions, Phys. Rev. Lett. 124 (2020) no.10, 102301 [arXiv:1907.08101 [hep-ph]].
  • A. Kurkela and E. Lu, Approach to Equilibrium in Weakly Coupled Non-Abelian PlasmasPhys. Rev. Lett. 113 (2014)no.18, 182301[arXiv:1405.6318 [hep-ph]].

On phenomenology of ultrarelativistic heavy-ion collisions:

  • A. Kurkela and A. Mazeliauskas, Chemical Equilibration in Hadronic CollisionsPhys. Rev. Lett. 122 (2019), 142301 [arXiv:1811.03040 [hep-ph]]. 
  • A. Kurkela, A. Mazeliauskas, J. F. Paquet, S. Schlichting and D. Teaney, Matching the Nonequilibrium Initial Stage of Heavy Ion Collisions to Hydrodynamics with QCD Kinetic TheoryPhys. Rev. Lett. 122 (2019) no.12, 122302,[arXiv:1805.01604 [hep-ph]].
  • A. Kurkela and Y. Zhu, Isotropization and hydrodynamization in weakly coupled heavy-ion collisionsPhys. Rev. Lett. 115(2015) no.18, 182301[arXiv:1506.06647 [hep-ph]].

Work experience

  • 2015- Associate professor at UiS
  • 2015-2020 Staff member at CERN
  • 2013-2015 Marie Curie senior fellow at CERN
  • 2010-2013 Postdoctoral research fellow at McGill University
  • 2008-2010 Postdoctoral research fellow at ETH Zürich 
  • 2006-2008 PhD in physics at University of Helsinki