Skip to main content

Pore scale

The objective of the pore scale task is to identity mechanisms that influence fluid transport, chemical reactions, and oil recovery.

Publisert: Endret:

Simulering av veskestrøm i blodårer

Task leader: Espen Jettestuen, research manager, NORCE (esje@norceresearch.no)

The main topics in this task has been to study the behaviors of polymers and the effect of water chemistry on the strength and structure of the pore space.

In the project "Description of the Rheological Properties of Complex Fluids Based on the Kinetic Theory" kinetic theory is used to predict the polymer fluid rheology from the microscopic description of the polymer. This method has now been used to consider salinity effects and mechanical degradation of the polymer. Journal publications on both topics are planned. Project manager Dmitry Shogin was awarded a VISTA scholarship extending the project duration to 2022. Two PhD students are joining the project. The experimental PhD, Siv Marie Åsen, has started early 2018. The numerical PhD started August 2018.

The PhD project "Experimental investigation of fluid chemistry effect on adhesive properties of calcite grains" studies the adhesion of calcite-calcite surfaces in different brines using atomic force microscopy and atomic force apparatus. These measurements techniques have been extended to work on rough surfaces so that the adhesion force can also be studied as a function of surface topology. The PhD student has received a six months extension to finish the thesis. An article has been published in "Langimur".

Numerical methods are developed in the project "Micro Scale Simulation of Polymer Solutions" to study fluids with non-Newtonian rheology’s on the pore scale. The simulations will be used to understand which polymer properties are important on the Darcy scale. The stability of the code has been improved and can now handle viscosity ratios of 1000-5000. An article has been published in "Physics of Fluids".

The project "Pore scale simulation of multiphase flow in an evolving pore scale" uses a lattice Boltzmann numerical method to study how pore space and wetting are affect by fluid chemistry and flow rates. This method is used on real chalk geometries previous acquired as part of the project. The numerical model has been updated with an improved phase-separation algorithm capable of handling dynamic wetting properties and used to simulate both spontaneous imbibition and relative permeability setups. The results have been presented at the EAGE 2018 Workshop in Copenhagen and EGU 2018 in Vienna.

1.3.4 Description of the rheological properties of complex fluids based on the kinetic theory (postdoc project)