Condition Monitoring and Predictive Maintenance (OFF540)
The course deals with condition monitoring and predictive maintenance of dynamic machinery and static mechanical equipment. The course provides the project execution model to design and manage condition-based maintenance and predictive maintenance programs.
Course description for study year 2022-2023
Course code
OFF540
Version
1
Credits (ECTS)
5
Semester tution start
Spring
Number of semesters
1
Exam semester
Spring
Language of instruction
English
Content
The course provides the engineering analysis methods to analyse industrial equipment and structures, failure modes, failure symptoms and determine suitable monitoring techniques (vibration, acoustic emission, ultrasonic, oil-debris, thermal and process parameters) and the required technical specifications.
The course provides basic hands-on practics to perform signal analysis, detection analysis, diagnosis and prognosis analysis.
The course focuses on detecting the most common industrial faults like imbalance, misalignment, bent shaft, bearing defects, gear faults, structural cracks in pipes piping and pressure vessels, and faults for on-demand equipment.
The non-destructive testing (NDT) methods are also provided such as penetrant, flux leakage, eddy current, radiography.
Learning outcome
- Gain a comprehensive understanding of condition monitoring (CM), condition-based maintenance (CBM) and predictive maintenance (PdM).
- Gain a basic understanding and theories behind the monitoring techniques, e.g. vibration, acoustic emission, ultrasonic, oil-debris, thermal and process parameters.
- Gain a basic understanding and theories behind signal analysis (time and frequency domains), diagnosis and prognosis analysis.
- Gain a basic understanding and theories behind the non-destructive testing (NDT) methods such as penetrant, flux leakage, eddy current, radiography.
- Be able to apply the project execution model to design monitored and PdM-ready equipment and deliver Concept and front-end engineering (FEED) studies.
- Be able to perform engineering analysis methods, e.g. Failure modes analysis, Symptoms Analysis, Sensor diagnostic coverage analysis, PdM concept study.
- Be able to perform time and frequency domain signal analysis.
- Be able to perform diagnosis analysis and determine the fault type, location and severity level.
- Be able to perform prognosis analysis (physics-based and/or data-driven) to predict the remaining useful lifetime.
Required prerequisite knowledge
Exam
Project work and oral presentation
Form of assessment | Weight | Duration | Marks | Aid |
---|---|---|---|---|
Project work in groups | 9/10 | Letter grades | ||
Oral presentation | 1/10 | Letter grades |
All assessment parts must be passed to achieve an overall grade in the course. There are no re-sit opportunities on the project assignment, if students want to take this part again, they must take the course again the next time the course is lectured.Students who do not attend the presentation cannot expect to take this part again. If there is a valid absence, the student can, by agreement with the subject teacher, complete the presentation at a later date.Students who do not pass one of the assessment sections, or wish to improve their grades, must retake all assessment sections within the same semester in order to obtain a new overall grade.
Coursework requirements
Course teacher(s)
Course coordinator:
Idriss El-ThaljiHead of Department:
Mona Wetrhus MindeMethod of work
Overlapping courses
Course | Reduction (SP) |
---|---|
Condition monitoring and management (MOM350_1) | 5 |