Water diversion EOR technique –

Challenges related to Technology Development and Field Implementation
Outline

• Introduction – Snorre In-depth water diversion
• Technology development
 – From idea to qualified technology - Challenges
 • Up-scaling
 • Field pilot – Operation/result
 – Factors important for progression
• Field implementation
 – Challenges
• Summary/Conclusions
In-depth water diversion – Sodium silicate

Idea/Goal: Establish flow restrictions in flooded areas to improve lateral and vertical reservoir sweep

Requirement for chemical:

• Flow like water at low temperature
• Gel up and plug formation when heated
• Environmental acceptable (Green, ref. PLONOR list)
• Cost: Allow for injection of large volumes. Commercial available.
Snorre license IOR-workshop (Late 2006): Need for sweep improvement

Technology development: In-depth water diversion using sodium silicate

- **2007:** Idea
- **2008-2009:** Lab study (0.3 m and 2 m scale)
 - Conclusion: Promising result (*SPE-143836 and EAGE April 2011*)
- **2011:** Single well field pilot (50 m scale)
 - Conclusion: Successful single well test (*SPE-154004*)
- **2013:** Large scale field pilot (2 km well spacing) (*SPE-169727*)
- **2014-2015:** Field pilot response measurement
- **2016:** Field pilot interpretation
 - Conclusion: Successful “First use” of in-depth water diversion (*SPE-179602 + coming paper in 2016*)
 - Recommendation: “Second use” operation to confirm ability to model and predict diversion and IOR response

Field implementation
Technology development/Field pilot challenges

- EOR Technology development challenge: It takes long time.
- EOR Field Pilot challenges:
 - High cost
 - Value earning to come in possible future implementation, not in pilot - Both for owners and service providers
 - Risk of lost production
 - Damage of injection well - Near wellbore plugging
 - Damage of production well – Process problem due to break through of chemicals
 - To obtain reliable and conclusive reservoir response
 - In-depth restriction
 - No near wellbore damage
 - Sweep alteration
 - Reduction of water cut/Increased oil production
Pilot area

Thief zone challenge

Initial injection water front speed: approx. 6 m/d (2002-2003)

Water tracer injection (2008) Tracer front speed: 9-11 m/d
Pre pilot sanction - Simulated response from In-depth water diversion

Improved sweep:
Delayed break through of tracers added to the injected water

Water cut

Segment water cut

-3% points

-2% points

Tracer response

Reference case

Wide thief zone

Narrow thief zone
Injection operation from Siri Knutsen

Main risks:

- Damage of wells.
 - Plugging of injector.
 - Break through in producer.
- IOR response below detection limit.
Snorre – Field pilot operation: June 2013 - October 2013

• 1,5 months Pre-slug: 113 500 m³
 - Desalinated seawater
 - Added concentrated KCl

• 3 months Silicate injection: 240 000 m³
 - Concentrated Silicate
 - Diluted with desalinated water
 - pH adjustment with HCl
 (diluted from concentrated acid)

• 0,5 month Post-slug: 49 000 m³
 - Desalinated seawater
 - Added concentrated KCl

• Continue water injection from the Snorre platform
Calculated reservoir transmissibility between E-4 H and P-15

\[T = \frac{\Delta p}{q} \]

Pre-pilot level – although with considerable scatter
Snorre silicate pilot – E-4 Tracer injections

Tracer injections - Pre-pilot:
- 2008 and 2012

Tracer injections – Silicate pilot:
- 2013 Early in Pre-slug injection
- 2013 Late in pre-slug
- 2013 During Post-slug injection

Tracer injections after Silicate pilot:
- April 2014

Tracer response proves major sweep alteration
- Early pre-slug tracer: 60 % delayed
- Post-slug tracer: 160 % delayed
- Post job tracer (2014): No Breakthrough yet
P-15 Water cut

Water-cut: Pilot sanction simulations and observed response

Pilot sanctioning – Ref. case
Pilot sanctioning – Pilot case

Observed response

Start of silicate injection

Injection volume after pilot start - Sm3
P-15 oil production from start of pilot injection
Modelling: Simulating and matching observed data

Reservoir transmissibility

Black: Obs
Green: Sim (silicate and HM)
Red: Sim (no silicate)

Tracer-data – Post-flush tracer

Without silicate
First observation of the tracer
With silicate

Falloff-data

Green: Observed Mar 2012
Orange: Observed Mar 2014
Purple: Simulated Mar 2012
Black: Simulated Mar 2014

Change in water-cut

First observation of the tracer
Main flow restriction seems to have formed in this area between 100-230 days after the start of silicate injection.

Indications of early moderate flow restriction due to cross-flow of salts. Mitigating actions are possible for future operation.
Modelling: Water cut P-15P
(Sensitivity – Alternative treatment year)
2012 (DG3) – Technology Qualification Pilot (Snorre)
Success criteria

1. Successful large scale transportation, mixing and pumping of silicate. **Confirmed**
 - The new concept with use of shuttle tanker as operation platform was operational robust
 - Field scale desalination, dilution, mixing and injection was successful
 - Gel kinetic of injected fluid reproduced the gel kinetic obtained from lab experiments

2. Proved in-depth flow restriction and minor near wellbore damage. **Confirmed**
 - A significant in-depth flow restriction is established in the reservoir.
 - No near wellbore damage in the injection well
 - No breakthrough of Silicate in the production well even with more than three times displacement volume injected as compared with previous tracer BT volumes
3. Proved significant change in flow pattern. **Confirmed**
 - Restriction has induced a significant change in flow pattern for injected water (tracers)

 Confirmed lower WCT.
 - Reduction in water cut in line with the prognosis at pilot sanctioning.
 - IOR-volume from the pilot marginal due to reduced throughput.
 - Mitigations/optimizations possible for future operations.

Modeling
- Technique for modeling in-depth water diversion developed and qualified.
Elements important for progression (NB! Case dependent)

- Technology development driven by the license
 - Good support from central organisation.
- Close cooperation with Research institute (IRIS) and Contractors (Halliburton and Knutsen Subsea Solutions).
- Close cooperation with the license partnership
 - Frequent partner involvement
 - Involvement gives ownership and enthusiasm.
 - Support from all the Snorre license partners.
- Systematic approach - Up-scaling
 - Mind set on large field pilot from the start
- Operation: Minor interference with operations on the Platform (Snorre A)
- Sanctioning process:
 - Positive NPV for the pilot for expected case (Not for low case).
Field implementation

Implementation concept depend on field challenge:

- Poor sweep from water injection
 - Geological heterogeneities
 - Unfavourable mobility ratio with injected fluid
- Water production processing limitation
- Stand alone treatments or combined with polymer injection.

Concept for field implementation

- “Full field” implementation - Frequent treatments
- Stepwise implementation – In-frequent treatments
 - Common injection operation service provided for several fields (ref. implementation of LWI - Light Well Intervention vessel services)
 - Cost sharing
Field implementation

• New market situation
 – Break even requirement

• Value estimation
 – Apply current modelling technology for in-depth diversion
 – Further development of modelling technique

• Cost reduction:
 – Optimize operational concept.
 • Re-use of equipment
 – Cooperation across owner licenses/operator companies - Share cost/risk
 – Product and services cost
 • Marked adjustment
 • High volume
Conclusion

- EOR technology development and field implementation
 - Takes long time/High cost
 - Close cooperation needed (Operator(s), License owners, Research institutes, Service companies)
 - Benefits from close cooperation:
 - Early operational involvement
 - Share cost/risk (For field pilots and field implementation)
- Possible contributions from NIOR:
 - Further development of simulation method/tool for modelling of in-depth water diversion.
 - Include effect of divalent salt in dynamic modelling of gel kinetics.
Acknowledgements

• Snorre Partnership
 • Statoil ASA
 • Petoro AS
 • ExxonMobil E&P Norway AS
 • Idemitsu Petroleum Norge AS
 • DEA Norge AS
 • Core Energy AS

• Contractors
 • IRIS
 • Knutsen Subsea Solutions
 • Halliburton
 • BASF
 • SS7