A method for locally adaptive gridding and local updates of the geological structure in earth models

Erich Suter (a,c,d), Terje Kårstad (b), Alejandro Escalona (a) and Erlend Vefring (c,d)

Department of Petroleum Engineering, University of Stavanger, Norway
Department of Electrical Engineering and Computer Science, University of Stavanger, Norway
IRIS AS – International Research Institute of Stavanger
DrillWell - Drilling and Well Centre for Improved Recovery (www.drillwell.no)

E-mail: Erich.Suter@iris.no

Motivation

- Interpretation of complex geological structure is uncertain and has large impact on decision making for geosteering, field development, drilling operation, ...
- While drilling: should take full advantage of all available measurements
- Effective handling of complex structural uncertainties require new methods
 - Local updates while drilling based on new measurements at sub-seismic scale
 - Uncertainty modelling: structure, fluid flow, volume estimation

Current methods (e.g. Petrel and RMS)

- A global grid property represents both structure and properties
 - Ineffective to regenerate the complete grid each time the structure is modified
 - Effective structural updates can only be achieved by manipulation of the existing grid
- Today’s automatic methods for local updates of the structure are limited to:
 - Geometric perturbation of the base case structural model [4], e.g. slightly adjust location and displacement of existing faults [1], adjust thickness and depth of layering [2]
 - Geometric perturbation cannot handle (or very limited):
 - Local updates of the structural topology (how faults are connected, depositional structure and stratigraphy, insert new faults/layers, etc.)
 - Unforeseen geological events, or to update the geological concept used in the interpretation (e.g. “is local scale compression taken up by faulting or folding?”)
- Once decided, the resolution of grid and structure cannot be effectively updated
- Result (in particular for complex structural uncertainties)
 - Only part of the uncertainty is captured in the model – Uncertainty is underestimated
 - Sub-optimal support for geosteering (structure is not properly updated while drilling)
 - Poorly estimated uncertainties in structure, fluid flow, reservoir volume

Suggested method for local updates of structure and grid

- Structure and properties are modelled separately (Fig. 1)
 - Properties not in a single grid, but in multiple property functions
 - The structure splits the subsurface into regions that are independently handled
 - Each region is separately discretized at the required scale ➔ set of subgrids
- A subgrid and a property function is linked via a geometric mapping f
 - The mapping allows population of subgrid from property function
- Automatic operators based on geological parameters locally update the structure
 - Insertion/removal/update of faults and layers, erosion, folding and other geological events in a geologically realistic manner
- Advantages
 - Structural modelling and local updates not constrained by grid
 - Local updates: if the structure is locally modified, only subgrids in the immediate neighbourhood must be updated. The rest of the subgrids are kept
 - Grid resolution can be locally modified, e.g. fine scale around and ahead of the drill bit
 - Automatic updates enable uncertainty handling of the structure
 - Geological concept used for interpretation can be locally modified (“faulting or folding?”)
 - Local scale uncertainty handling, multiple geological concepts within local part of model
 - Individual management of each region and subgrid enables parallel processing
- Almost everything modelling (e.g. while drilling)
 - Model is never fixed and always updated with the most recent measurements
 - Always optimal grid resolution for the current purpose
 - Grid always available for various simulations during drilling (and seismic interpretation?)

Proof of concept & Future work

- Subsurface is split into regions that are separately handled (Fig. 1+2+3)
- Local updates
 - Structural topology: automatic operators locally insert new layers and faults (Fig. 2+3)
 - Grid resolution adapted to region of interest and facies type (Fig. 3)
 - Local scale uncertainty management of faulting in the interior of a fault block (Fig. 3)
- Method is prototyped in 2D, extension to 3D is conceptually straightforward
- Management of more complex structure, automatic operators based on geological parameters to handle geologic events, multi-scale modelling
- Uncertainty in well trajectory while drilling
- Adaptation of grid resolution to e.g. wave fronts in flow
- Model updates while drilling based on multiple measurements (deep EM, LWD logs)
- Local scale uncertainty handling of complex geology

Examples of complex structural uncertainties

- Fault network around a salt dome, salt tectonics
- Subseismic faults and layering, fault zone deformation, fault reactivation, size of a trap, conjugate faulting etc.

Figure 1: Mapping of properties into structure. Each region R in the structure is separately gridded and populated with properties from a property function Φ via the mapping f

Figure 2: Local update of layering: insertion of the new layer in yellow. The bottom layer in green is not changed

Figure 3: Automatic local updates of faulting and grid resolution in the interior of two fault blocks. Uncertainty modelling of the number of and displacement of faults in the interior of a fault block. Sands in orange at finer resolution than surrounding shales. Fault blocks of interest at finer resolution than other fault blocks.

References:
E. Suter, E. Cayeux, E. Veiling, A strategy for effective local update of the geological structure in an earth model during drilling, 74th EAGE Conference & Exhibition, 2012
P. Abrahamsen, A. Escalona, E. Suter, Uncertainty management of a faulted structure: the benefits of an uncertain fault capture approach, SPE191040, presented at SPE Russian Oil and Gas Conference and Exhibition, Stavanger, Norway, 2016
P. Abrahamsen, A. Escalona, E. Suter, Uncertainty management of a faulted structure: the benefits of an uncertain fault capture approach, SPE Russian Oil and Gas Conference and Exhibition, Stavanger, Norway, 2016
The authors acknowledge the Research Council of Norway, ConocoPhillips, Det norske oljeselskap, Lundin Norway, Statoil and Norwegian government for financing the work through the research centres DrillWell - Drilling and Well Centre for Improved Recovery, a research cooperation between IRIS, NTNU, SINTEF and USt.

The Centre for the Pre-deep Geoscience of the North Sea (www.cpgn.no) is gratefully acknowledged for support.