NIOR Wettability Estimation by Oil Adsorption

Visit NIOR to Wintershall (Barnstorf) and BASF (Ludwigshafen)
May 22nd – 24th, 2017

PhD-student Samuel Erzuah
Supervisor Ingebrit Fjelde
Co-supervisor Aruoture Voke Omekeh
Introduction

- Representative wettability conditions in SCAL and EOR-experiments
 (e.g. smart water and polymer flooding)
- SCAL data not early available
- Early more reliable potential estimates for water flooding will reinforce early focus on EOR-methods
Objectives

• Develop method for estimation of wettability condition of reservoir rock based on wettability of minerals mainly in contact with the flowing fluid phases
Secondary objectives

• Develop Quartz Crystal Micro-Balance with Dissipation (QCM-D) method to determine oil adsorption on mineral surfaces

• For selected rock examples, determine wettability and oil adsorption for minerals mainly in contact with flowing fluids in reservoir rock

• Develop method for estimation of wettability conditions in reservoir rock based on wettability of minerals and mineral distribution.

• Compare these wettability estimates with results from reservoir wettability studies using standard methods
Dissemination

Main results

• Development of QCMD method for oil adsorption measurements, more challenging than expected

• Flotation tests
 – Cheap and fast wettability screening
 – Small amounts of rock/minerals required

• Surface complexation modelling (SCM) promising cost-effective technique to estimate wettability of minerals at reservoir conditions
Result examples

• QCM-D development
• Flotation experiments
• Surface complexation modelling
Quartz Crystal Microbalance with Dissipation (QCM-D)

• Nanoscale technique for analyzing surface phenomena including thin film formation, interactions and reactions

• Frequency
 • Related to mass/thickness

• Dissipation
 • Related to rigidity
QCM-D measurements

1. **Binding of a small globular molecule**
 - Moderate frequency change Δf (mass change).
 - Low dissipation change, ΔD (indicating rigid film).

2. **Binding of a large elongated molecule**
 - Large Δf (more mass).
 - Large ΔD (soft film).

3. **Rinsing with regenerating buffer removing elongated molecule**
 - f back to phase 1 (mass removal).
 - D back to phase 1 (back to rigid film).
QCM-D in EOR/IOR

- Sensor of different materials

- Several possible EOR/IOR applications, e.g.
 - Dissolution and precipitation minerals
 - Adsorption/retention of chemicals
 - Polymer, surfactant, production chemicals
 - Crude oil
 - Crystal growth
Development QCM-D flow-cell method

- Cooperation with supplier
- New flow cell
 - Reservoir temperature and **pressure (NEW)**
 - i.e. back-pressure possible
 - Change in design to allow displacement of different fluid phases
 - Testing of prototype flow cell
- Sensors
 - Mainly quartz sensors during method development
 - Kaolinite sensors prepared and used in some tests
QCM-D experimental set-up

Injection fluid → Flow cell with sensor
Stainless steel
Temp. & pressure → Back pressure regulator
QCM-D Challenges

- When formation water injected, corrosion of stainless steel flow cell
 - Deposition of corrosion products on sensors
 - New flow cell in titanium prepared by supplier
 - Change to titanium piston cell and peak tubing

- Dissolution of quartz sensor and kaolinite sensor by formation water
 - Necessary to saturate fluids with mineral before injection
New QCM-D experimental set-up

Injection fluid → Mineral column → Flow cell with sensor (Titanium, Temp. & pressure) → Back pressure regulator

Oven
QCM-D quartz sensor without and with mineral column
Next steps:

- Oil injections
- Kaolinite
Flotation experiments

- Affinity of minerals to their respective fluid phases
- Mainly determined by wettability, particle, particle size, temperature and interfacial tension
- Experiments at same temperature and interfacial tension
- Reference with n-decane to isolate effect of wettability
Flotation Mineral examples

Amount oil-wet particles (w%) for different brines and oils

Quartz

Kaolinite

Calcite
Flotation example Reservoir rock
Simulations PHREEQ-C

- Ion-exchange
- Solubility minerals
- Surface complexation modelling (SCM)
 - Estimating attractive electrostatic pair linkages between oil-water interfaces and mineral surfaces
 - Bond product
 - Product of mole fraction of oppositely charged oil-water and mineral surfaces
 - Used to quantify tendency of oil adhesion on mineral surfaces
SCM Quartz

Figure 1: The bond product of the dominant electrostatic pair linkage in quartz.

Water-wet
SCM Kaolinite

Less water-wet than quartz
SCM Calcite

Less water-wet than both kaolinite and quartz
Comparison Flotation and SCM

Similar ranking of minerals by SCM as wettability characterized by flotation tests
Summary

• Development of QCM-D for measurement of oil adsorption more challenging than expected
 – Appears promising also for other EOR/IOR studies, but further development required

• Flotation
 – Cheap and fast method for wettability screening
 – Only smaller quantities of rock/mineral required

• Simulations SCM
 – Cost-effective technique of estimating wettability of minerals in reservoir rocks
 – In agreement with flotation ranking of minerals
 – Information about dominating adsorption mechanisms