Energy scenarios
A review of IEA's World Energy Outlook
Klaus Mohn, Professor
University of Stavanger Business School
http://www.uis.no/Mohn
Twitter: @Mohnitor

15th IAEE European Conference 2017
Vienna, 4 September 2017

Introduction
What does methodology and model

- Authoritative reference document
 - Van de Graaf (2012)
 - Heubaum and Bierman (2015)
- Scenario approach to energy
- Debate and dispute
 - Midttun and Baumgartner (1986)
 - Gaede and Meadowcraft (2016)
- Methodology and model
Model and methodology

IEA's World Energy Model (WEM): General overview

- Supply
 - Coal
 - Oil
 - Gas
 - Biomass

- Primary demand
 - Coal
 - Oil
 - Gas
 - Nuclear
 - Hydro
 - Bioenergy
 - Renewables

- Conversion
 - Coal upgrading
 - Refining
 - Gas processing
 - Power generation
 - Heat production
 - Biomass process

- Final demand
 - Industry
 - Feedstock
 - Transport
 - Residential
 - Services
 - Agriculture

- Demand drivers
 - Value added
 - Person kilometer
 - Ton kilometer
 - Household size
 - Floor space
 - Appliances ownership

Energy and the macro economy

Energy demand allowed to diverge between scenarios...

- Drivers of energy demand
 - Economic growth
 - Technological change
 - Structural change
 - Prices and policies

Energy and the macro economy
... but economic growth is the same across scenarios

- Drivers of energy demand
 - Economic growth
 - Technological change
 - Structural change
 - Prices and policies
- Exogenous economic growth
 - No variation across scenarios

Primary energy demand and GDP
Average annual growth (per cent)

<table>
<thead>
<tr>
<th>Year</th>
<th>Current Policies</th>
<th>New Policies</th>
<th>450 Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-2020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021-2040</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-2040</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Energy technology
“Black swan” - or “Slow train coming”?

<table>
<thead>
<tr>
<th>Technology</th>
<th>Change 2014-2040 (per cent; New Policies Scenario)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar energy (PV)</td>
<td>-60</td>
</tr>
<tr>
<td>Onshore wind</td>
<td>-40</td>
</tr>
<tr>
<td>CCS</td>
<td>-20</td>
</tr>
<tr>
<td>Vehicle batteries</td>
<td>0</td>
</tr>
<tr>
<td>Efficient lighting</td>
<td>20</td>
</tr>
<tr>
<td>Upstream oil and gas</td>
<td>60</td>
</tr>
</tbody>
</table>

- Means to an end
- Modelling strategy
- Prices and policies
- Economic behaviour
- Role of uncertainty
New renewable energy

Installed capacity (GW), New Policies Scenario

Solar energy

Wind power

The gravity of status quo

Potential bias in data generation, modelling, and application

- Broadness & detail have a cost
- Model short on flexibility
- Assumptions are crucial
- Stakeholder interests
- Transparency is key

Primary energy demand by carrier
2000-2040 (bn toe, New Policies Scenario)