Climate policy risk
Oil industry response and financial outcomes

Klaus Mohn, Professor
University of Stavanger Business School
http://www.uis.no/Mohn
Twitter: @Mohntor

Annual research meeting of Samfunnsøkonomene
Bergen, 4 January 2017

Climate policy risk
Oil industry response and financial outcomes

- Climate policy risk
 - Definition and demarcation
 - Market/price implications
- Oil industry response
 - Short term adjustment
 - Strategic re-direction
- Financial outcomes
 - Sketch of a research project
Climate policy risk

Physical risks and transition risks

- Climate change
- Climate policy
- World economy
- Labour markets
- Capital markets
- Energy markets

Climate policy risk

Market, price and valuation impact

- Climate policy
- Oil and gas
- Investment
- Valuations
- Stranded assets
- Capital markets
- Energy markets

Climate policy risk

Market and price implications

- Externality correction
 - Capturing the social cost of carbon
 - Global quota versus national tax

- Focus on demand-side measures
 - Higher prices for consumers
 - Lower prices for producers

EU CO₂ price assumptions by IEA scenario
(USD/tonne @2016 prices)

<table>
<thead>
<tr>
<th>Year</th>
<th>Current policies</th>
<th>New policies</th>
<th>Sustainable Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>2025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Oil industry response

The green paradox: Distortion of original policy intent

- Climate policies as announced expropriation

- Evidence
 - Opec strategy change 2014
 - Shale oil expansion
 - Exploration policies
Oil industry response
The green paradox: Emerging call for supply-side policies

- Front-load production
 - More myopic investment behaviour
 - Aversion to long-term projects
 - Focus on oil, and esp shale oil
- Bend the business framework
 - Community outreach
 - Energy analysis and dialogue
 - Stakeholder engagement

The emergence of shale oil...
... and the oil price
Oil industry response

Short-term reaction: Speed up production, push policies, buy time

- Front-load production
 - More myopic investment behavior
 - Aversion to long-term projects
 - Focus on oil, and esp shale oil

- Bend the business framework
 - Community outreach
 - Energy analysis and dialogue
 - Stakeholder engagement

The emergence of energy scenarios

IEA’s World Energy Outlook 2017

- New Policies Scenario
- Sustainable Development Scenario

Main points:
- Front-load production
- More myopic investment behavior
- Aversion to long-term projects
- Focus on oil, and esp shale oil
- Bend the business framework
- Community outreach
- Energy analysis and dialogue
- Stakeholder engagement
Oil industry response

Hits from Google searches

Oil industry response

Hits from Google searches (normalised)
Oil industry response

Climate risk exposure: demand outlook and price uncertainty

Oil industry response

Strategic re-direction: Repositioning, readjustment, diversification

- Repositioning
 - Fossil fuel portfolio

- Readjustment
 - Focus on CO₂ intensity
 - Energy efficiency
 - Cost efficiency
 - New KPIs

- Diversification
 - Natural gas
 - Power generation
 - New renewable energy

Oil industry response
Strategic re-direction: Repositioning, readjustment, diversification

Renewable interest
Oil majors’ deal count

Deal count
By technology (2002-2017)

Clean energy M&A JVs
By company (2014-2017)

Source: Bloomberg New Energy Finance.

Financial outcomes
Outline of an empirical research framework

Financial/performance indicators
- Investment
 - By activity
- Financial results
 - Earnings
 - Returns
- Valuation
 - Shareholder returns
 - Multiples

Climate policy risk indicators
- Product mix
 - Within fossil fuels
 - Out of fossil fuels
- GHG emissions
 - CO₂ intensity
 - Energy efficiency
- Governance
 - Strategy shift
 - CEO incentives

\[y = f(R; x) \]

Control variables

Financial outcomes: Investment

Example: Tobin’s q with heterogeneous capital expenditure

- LHS: Investment rates by activity (maturity)
 - Oil, natural gas, renewables
 - (exploration, development, acquisitions)
 \[
 \left(\frac{I}{K} \right)_{ijt} = \alpha + \beta q_{it} + \gamma_i x_{it} + \eta_i + \zeta_j + \nu_t + \varepsilon_{it}
 \]

- RHS: market value to replacement value (q)
 - Control variables (x)
 - Dummies and residual

Financial outcomes: Valuation

Assessment of valuation relevance and impact

- LHS: Valuation multiples (V)
 - Ratio of value indicator to value driver
 - (P/E; P/BV; EV/Sales; EV/DACF)
 \[
 V_{it} = \alpha + \beta R_{it} + \gamma_i x_{it} + \eta_i + \nu_t + \varepsilon_{it}
 \]

- RHS: Climate risk indicators (R)
 - Product and activity mix
 - CO₂ emissions (intensity)
 - Energy efficiency
 - Renewables

Financial outcomes: Returns

The price of climate risk: Fama/French multifactor model of returns

- LHS: Stock market returns
 - Change in share price...
 - ... plus dividends
 \[r_{lt} = \alpha + \sum_j \beta_j r_{jt} + \gamma_l x_{lt} + \eta_l + \nu_l + \varepsilon_{lt} \]

- RHS: Risk factors
 - Market risk
 - Company size
 - Growth factor
 - Climate risk ...
 \[r_{jt} = r_{jt}^m - r_{jt}^f, \quad j = 1 \]
 \[r_{jt} = r_{jt}^H - r_{jt}^L, \quad j = 2, \ldots, J \]

Climate policy risk: Figures in the making

Potential data sources

- Accounting data
 - Product mix
 - Revenue, cost and capex
 - Cash flow and earnings

- Financial reporting
 - Text analysis (SEC 10K, 20F)

- Indices and rankings
 - Stock market sustainability indices
 - Sustainability rankings

- Survey data
 - e.g., Carbon Disclosure Project

Climate-related financial disclosures
Core elements (not mandatory)