Data Science - master i teknologi


Dette er studieprogrambeskrivelsen for studieåret 2023-2024

Se årets (2024-2025) studieprogrambeskrivelse
Fakta

Vekting (stp)

120

Studieprogramkode

M-APPDAT

Studienivå

Mastergrad iht §3, 2 år

Fører til grad

Master of Science

Heltid/deltid

Heltid

Varighet

4 Semestre

Grunnstudium

Nei

Undervisningsspråk

Engelsk

Læringsutbytte

Etter fullført toårig mastergrad i Data Science skal kandidaten ha følgende samlede læringsutbytte, definert i form av kunnskap, ferdigheter og generell kompetanse:

Kunnskap

K1: Avansert kunnskap innen Data Science, som inkluderer databehandling, maskinlæring, datautvinning, statistikk og typiske programmeringsspråk for området, inkludert: Python and R.

K2: Spesialisert innsikt i dataanalyse.

K3: Dyp kunnskap om vitenskapelig teori og metoder i Data Science.

K4: Anvende kunnskap om algoritmer for statistisk analyse, maskinlæring eller datautvinning på nye områder innen datavitenskap.

K5: Analyser faglige problemstillinger basert på det fjerde vitenskapsparadigmet, 4Vs av store data (volum, hastighet, variasjon og variasjon), datadrevet tilnærming, CRISP-DM (standardprosess for datautvinning på tvers av industrien).

Ferdigheter

S1: Analysere og forholde seg kritisk til ulike informasjonskilder, datasett og dataprosesser; og anvende disse for å strukturere og formulere slutninger basert på dataene.

S2: Analysere eksisterende teorier, metoder og tolkninger innenfor fagområdet og arbeide selvstendig med å anvende og vurdere ulike lagrings- og databehandlingsteknologier.

S3: Bruk CRISP-DM og vitenskapelige metoder for å utvikle dataanalyseprogrammer på en uavhengig måte.

S4: Gjennomføre uavhengig, begrenset datainnsamling, analyse og evaluering i henhold til etablerte designprinsipper i samsvar med gjeldende forskningsetiske standarder.

Generell kompetanse

G1: Analysere relevante etiske problemer som oppstår gjennom databruk og datagjenoppretting.

G2: Bruke sine kunnskaper og ferdigheter på nye områder for å utføre avanserte oppgaver og prosjekter knyttet til databehandling, dataanalyse og optimalisering.

G3: Formidle resultater av omfattende dataanalyse og utviklingsarbeid, og beherske datavitenskapelige uttrykk.

G4: Kommunisere om faglige problemstillinger, analyser og konklusjoner innenfor fagområdet, både med spesialister og til allmennheten.

G5: Bidra til nye ideer og innovasjonsprosesser ved å introdusere datadrevne tilnærminger, omfattende dataanalyse og utviklingsarbeid, og mestre datavitenskapelige uttrykk.

Hva kan du bli?

Med en mastergrad i datavitenskap kan du få en stilling i nesten alle bransjer. Noen eksempler på virksomheter hvor du kan finne arbeid er IT-konsulentselskaper, virksomheter innen telekommunikasjon, energirelaterte virksomheter, sykehus og andre offentlige etater. Spesialisering i Data Science gir grunnlag for arbeid med dataanalyse og utvikling av databehandlingssystemer for hele datalivssyklusen. Det bygger kunnskap og ferdigheter innen avansert statistikk, datautvinning, maskinlæring og prosessering av store datavolumer.

Fullført mastergrad gir grunnlag for opptak på PhD-studier innen informasjonsteknologi, matematikk og fysikk.

Studieplan og emner

  • Obligatoriske emner

    • APPMAS: Masteroppgave i Applied Data Science

      Andre år, semester 3

      Masteroppgave i Applied Data Science (APPMAS)

      Studiepoeng: 30

  • 3. semester ved UiS eller utveksling

    • Emner ved UiS 3. semester

      • Anbefalte valgemner 3. semester

        • DAT530: Diskret simulering og ytelsesanalyse

          Andre år, semester 3

          Diskret simulering og ytelsesanalyse (DAT530)

          Studiepoeng: 10

        • DAT640: Informasjonsgjenfinning og tekstutvinning

          Andre år, semester 3

          Informasjonsgjenfinning og tekstutvinning (DAT640)

          Studiepoeng: 10

        • STA500: Sannsynlighetsregning og statistikk 2

          Andre år, semester 3

          Sannsynlighetsregning og statistikk 2 (STA500)

          Studiepoeng: 10

        • STA530: Statistisk læring

          Andre år, semester 3

          Statistisk læring (STA530)

          Studiepoeng: 10

      • Andre valgemner 3. semester

        • DAT510: Sikkerhet og sårbarhet i nettverk

          Andre år, semester 3

          Sikkerhet og sårbarhet i nettverk (DAT510)

          Studiepoeng: 10

        • DAT620: Prosjekt i datateknologi

          Andre år, semester 3

          Prosjekt i datateknologi (DAT620)

          Studiepoeng: 10

        • ELE510: Bildebehandling og maskinsyn

          Andre år, semester 3

          Bildebehandling og maskinsyn (ELE510)

          Studiepoeng: 10

        • ELE680: Dype nevrale nett

          Andre år, semester 3

          Dype nevrale nett (ELE680)

          Studiepoeng: 5

    • Utveksling 3. semester

  • Obligatoriske emner

    • DAT515: Nettskyteknologier

      Første år, semester 1

      Nettskyteknologier (DAT515)

      Studiepoeng: 5

    • DAT535: Data-intensive Systems and Algorithms

      Første år, semester 1

      Data-intensive Systems and Algorithms (DAT535)

      Studiepoeng: 5

    • DAT540: Introduksjon til datavitenskap

      Første år, semester 1

      Introduksjon til datavitenskap (DAT540)

      Studiepoeng: 10

    • STA510: Statistisk modellering og simulering

      Første år, semester 1

      Statistisk modellering og simulering (STA510)

      Studiepoeng: 10

    • DAT550: Datautvinning og dyplæring

      Første år, semester 2

      Datautvinning og dyplæring (DAT550)

      Studiepoeng: 10

    • DAT600: Algoritmeteori

      Første år, semester 2

      Algoritmeteori (DAT600)

      Studiepoeng: 10

    • ELE520: Maskinlæring

      Første år, semester 2

      Maskinlæring (ELE520)

      Studiepoeng: 10

    • DASMAS: Masteroppgave i Data Science

      Andre år, semester 3

      Masteroppgave i Data Science (DASMAS)

      Studiepoeng: 30

  • 3. semester ved UiS eller utveksling

    • Emner ved UiS 3. semester

      • Anbefalte valgemner 3. semester

        • DAT640: Informasjonsgjenfinning og tekstutvinning

          Andre år, semester 3

          Informasjonsgjenfinning og tekstutvinning (DAT640)

          Studiepoeng: 10

        • ELE510: Bildebehandling og maskinsyn

          Andre år, semester 3

          Bildebehandling og maskinsyn (ELE510)

          Studiepoeng: 10

        • STA500: Sannsynlighetsregning og statistikk 2

          Andre år, semester 3

          Sannsynlighetsregning og statistikk 2 (STA500)

          Studiepoeng: 10

        • STA530: Statistisk læring

          Andre år, semester 3

          Statistisk læring (STA530)

          Studiepoeng: 10

      • Andre valgemner 3. semester

        • DAT530: Diskret simulering og ytelsesanalyse

          Andre år, semester 3

          Diskret simulering og ytelsesanalyse (DAT530)

          Studiepoeng: 10

        • DAT605: Reinforcement Learning

          Andre år, semester 3

          Reinforcement Learning (DAT605)

          Studiepoeng: 5

        • DAT620: Prosjekt i datateknologi

          Andre år, semester 3

          Prosjekt i datateknologi (DAT620)

          Studiepoeng: 10

        • ELE680: Dype nevrale nett

          Andre år, semester 3

          Dype nevrale nett (ELE680)

          Studiepoeng: 5

    • Utveksling 3. semester

Utveksling

Utvekslingssemester

3. semester

Opplegg for utvekslingen

I 3. semester på mastergraden i Data Science er det lagt til rette for et studieopphold i utlandet.

Det er satt opp 30 studiepoeng valgemner i 3. semester. I utlandet må du velge fag som gir en tilsvarende fordypning innen ditt fagområde, og disse må være godkjente før du reiser ut. Det er også viktig at emnene du skal ta i utlandet ikke overlapper med emner du alt har tatt eller skal ta senere i studiet. Et tips er å tenke på din spesialisering og ditt interessefelt.

Flere muligheter

I tillegg til de faglig anbefalte lærestedene som er listet opp under, har UiS en rekke avtaler med universitet utenfor Europa som er aktuelle for alle studenter på UiS med forbehold om at de finner et relevant fagtilbud. Innen Norden kan alle studenter benytte seg av Nordlys- og Nordtek-nettverkene.

Finn ut mer.

Kontaktperson

Veiledning og forhåndsgodkjenning av emner: Sheryl Josdal

Generelle spørsmål om utveksling: Gå til utvekslingsveilederen i Digital studentekspedisjon

Opptakskrav

Opptakskravet er fullført bachelorgrad i ingeniørfag, i henhold til nasjonal rammeplan for ingeniørutdanning, eller tilsvarende utdanning med minst 10 sp med programmering og ytterligere 10 sp i datatekniske emner (databaser, algoritmer og datastrukturer, videregående programmering, operativsystemer eller lignende). Alle søkere må ha minimum 25 sp matematikk, 5 sp statistikk og 7,5 sp fysikk.

Det er satt en laveste gjennomsnittskarakter for opptak på C.

Det kan kreves minst 50 sp i programmering og datatekniske emner i tilfeller der nøyaktig innhold i programmering og datatekniske emner ikke kan bekreftes gjennom standardiserte læringsutbyttebeskrivelser basert på Bolognaprosessen.
Hvis du har fullført studier/emner utenfor Universitetet i Stavanger, må du laste opp originale emnebeskrivelser på norsk eller engelsk, som inneholder et klart definert læringsutbytte (curriculum). Emnenavn og -koder på emnebeskrivelsene må samsvare med karakterutskrift. Dersom du ikke laster opp emnebeskrivelser, risikerer du at søknaden din blir nedprioritert.


Søknadsfrist: 15. april

Søknadsfrist for søkere med utenlandsk utdanning utenom nordiske land: 1 mars