MENY

Plenumsforedragene

Her er titlene og sammendragene til plenumsforedragene under Etterutdanningskonferansen for matematikklærere 2017.

  • Bildet viser Kjersti Wæge.

    Kjersti Wæge, Matematikksenteret

    En praksisnær modell for kompetanseutvikling: Sykluser av utforsking og utprøving og muligheter for å lære ambisiøs matematikkundervisning

    Prosjektet Mestre ambisiøs matematikkundervisning er sentrert omkring en forskningsbasert modell for skolebasert kompetanseutvikling. I modellen knyttes teori og praksis tett sammen, og lærerne arbeider med sentrale kjernepraksiser i sykluser av utforskning og utprøving. Målet er at lærerne skal utvikle en undervisningspraksis hvor de kan engasjere seg i elevenes tenking, stille spørsmål som fremmer matematisk tenking og forståelse, observere og vurdere elevenes resonnement, språk og argumentasjon og ut fra det legge til rette for gode læringsprosesser hos elevene.

  • Bildet viser Mark Hoover.

    Mark Hoover, University of Michigan

    Mathematical Knowledge for Teaching: The “Task” Ahead

    Identifying specialized mathematical knowledge is important for the preparation of mathematics teachers and for the improvement of mathematics teaching. This presentation provides background on past work, advances a dynamic conception of mathematical knowledge for teaching, and sketches agendas for the future. It highlights the importance of the work of teaching in investigations of mathematical knowledge for teaching. In particular, it argues for the centrality of mathematical tasks of teaching as a focus and explores how mathematical tasks of teaching that are situated in pedagogical contexts enable the coordination of mathematical ideas with instructional purpose. The presentation then describes how this frame is used to design activities that are useful in developing and assessing mathematical knowledge for teaching. 

  • Bildet viser Tim Rowland.

    Tim Rowland, University of Cambridge

    Mathematics teaching: never a dull moment

    Every mathematics lesson begins from a planned 'script' - in the mind of the teacher at least, and usually in a lesson plan document. But events in the mathematics lesson rarely, if ever, proceed according to plan. Unexpected, or 'contingent', moments and events are usually triggered by a student's contribution of some kind - an idea, a question, a response to a task. The teacher's response to these contingent events calls upon several aspects of their professional persona, their beliefs and values, their improvisational skills, as well as their disciplinary knowledge. In this talk I will introduce some unexpected moments from lessons in different countries and different grades. My focus will be on the opportunities created, and how the lesson could develop in response, with implications for the teacher's knowledge of the 'longitudinal sweep' of the mathematics curriculum from grade to grade.