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Executive summary 

Numerous laboratory experiments have shown that modifying the ionic composition of the 

injection brine can lead to improved oil recovery. However, the mechanisms responsible are 

not fully understood. To complement observational work, this project uses the IORCoreSim 

simulator to explore mechanisms that may be important during “Smart Water” flooding. 

The project also investigates workflows for field scale polymer flooding. Most simulators for 

polymer flooding do not fully account for effects of apparent shear thickening and mechanical 

degradation in the near well zone, which could lead to poor forecasts. Particular attention is 

paid to how these effects can be modelled with commercial and open-source tools. 

Comparisons are made with IORCoreSim. 

Project background 

The project is a postdoctoral research project. Collaborators are from UiS and NORCE.  

Results 

Findings are presented in the following pages, presented under four main headings: 

• “Simulating pH changes during core reactivity tests in sandstones” 

o A simulation study to see whether a simple cation exchange model can explain 

observed pH changes during one-phase core floods in reservoir sandstones 

(suggested answer: no) 

• “Near-well polymer flow in IORCoreSim and INTERSECT” 

o A presentation of the IORCoreSim well model for polymer flooding. 

o Application to a small sector-scale example in Cartesian geometry, mimicking 

radial flow. 

o Comparison with analytical calculations and INTERSECT (IX). 

• “IORCoreSim case study in a channeled reservoir” 
o A slightly extended version of the case study reported in the “recommended 

practices” report on polymer upscaling (i.e., mostly the same content) 

• “Extending polymer flooding functionality in OPM” 

o A brief presentation of efforts to add extra polymer functionality to the Open 

Porous Media (OPM) simulator. 

At least for now, there is no general conclusion at the end of the report, but we briefly 

mention plans for future work and dissemination. 
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I. Simulating pH changes during core reactivity tests in sandstones 

Injection of low salinity (LS) water into sandstone cores is frequently accompanied by an 

increase in effluent pH. It is well known that chemical reactions governing rock wettability 

are pH-dependent, hence it has been suggested that local pH changes at mineral surfaces 

could trigger wettability alteration, and in turn lead to improved oil production (Austad, 

RezaeiDoust and Puntervold 2010) (RezaeiDoust, Puntervold og Austad 2011) .  

What can we explain with a «generic» cation exchange model? 

One proposed mechanism for wettability alteration is cation exchange. An initial study was 

conducted to ascertain whether a simple cation exchange model can explain observed pH 

trends in one-phase corefloods. To this end, reactive transport simulations were performed 

with IORCoreSim. The simplest geochemical models ignore mineral-specific effects, and 

account for cation exchange by introducing a generic ion exchanger, 𝑋−, to the model 
equations. If sodium, calcium, and protons are the only cations competing for access to the 

surface, we need two linearly independent reactions, e.g.: 

𝑵𝒂+  +
𝟏

𝟐
𝑪𝒂 − 𝑿𝟐  ↔  𝑵𝒂𝑿 +

𝟏

𝟐
𝑪𝒂𝟐+ 

𝑵𝒂+  + 𝑯𝑿 ↔  𝑵𝒂𝑿 + 𝑯+ 

In IORCoreSim, the Gaines-Thomas convention is used to describe ion exchange (Gaines Jr 

og Thomas 1953). Selectivity coefficients (“equilibrium constants”) for cation exchange 

reactions are input indirectly, by reformulating them as half-reactions involving a fictive “free 

surface” species, 𝑋−: 

𝑵𝒂𝑿 ↔  𝑵𝒂+ + 𝑿− 

𝑪𝒂𝑿𝟐 ↔  𝑪𝒂𝟐+ + 𝟐𝑿− 

𝑯𝑿 ↔ 𝑯+ + 𝑿− 

For the work presented in this report, constant values were assumed for the cation exchange 

selectivity coefficients. The sodium reaction was used as a reference (i.e., log𝐾𝑁𝑎𝑋 = 0), while 

the selectivity coefficient for the calcium and proton half-reactions were: 

log𝐾𝐶𝑎𝑋2
= −0.8 (Appelo og Postma 2004) 

log𝐾𝐻𝑋 = −4.6  (Wieland, et al. 1994) 

Note that the selectivity coefficient for proton exchange is based on a more advanced model 

(Wieland, et al. 1994) than the one considered here.  

Simulation results compared to data 

Data reported by (Aksulu, et al. 2012) were used for comparison with IORCoreSim; 

specifically, a set of one-phase core floods conducted in the same reservoir core plug, named 

RC2.  The core floods were performed at three temperatures: 40 °C, 90 °C, and 130 °C.  At 

each temperature, the core was subjected to a cycle of High Salinity (HS)  LS  HS 

injection at a constant flow rate of 4 pore volumes (PV) per day. The HS brine consisted of 

1.54 M NaCl and 90 mM CaCl2, while the LS brine was pure NaCl (17.1 mM).  
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An initial simulation was conducted under the following (additional) assumptions: 

• T=25 °C 

• No dissolved CO2 

• CEC = 0.1 eq/L PV  (constant cation exchange capacity) 

Figure 1 compares simulated effluent pH to the experimental data points. The pH 

gradient, Δ𝑝𝐻, increased by ~3 for the injection cycle at °40C. This cannot be reproduced 
with the model; the simple ion exchange model can explain a reversible pH jump of at 

most ~2 units following a ~100 times reduction in the total salinity. 

 

Figure 1: Example simulation at T=25 °C compared to data for core floods performed at different temperatures. 
Before measuring the pH, the collected samples were cooled to room temperature. 

Figure 2 shows that that model cannot explain the temperature trends seen in the data: 

 

Figure 2: Effluent pH during HS LS HS injection at three different temperatures (40°C, 90°C, 130°C).  

Circles:  pH measurements taken at room temperature (same as in Figure 1 ). Dashed line: Effluent pH reported 

by IORCoreSim for in-situ temperature conditions. Solid line: Simulated effluent pH corrected to room 

temperature by performing an additional geochemical equilibrium calculation. 
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The simulated pH is very sensitive to temperature (solid line), but in contrast to what is 

observed, there is a large jump in effluent pH immediately after increasing the temperature, 

i.e., even at the same injected salinity. As indicated by the dashed line in Figure 2, this pH 

jump is caused by a slight increase in the simulated in-situ pH, which in turn is a 

consequence of cation realignment on the cation exchanger. In other words, a small 

difference in the in-situ pH leads to a dramatic increase in the predicted pH at room 

temperature. The explanation is that the dominant reaction in the geochemical model is 

water dissociation, which is an endothermic reaction: 

𝑯𝟐𝑶 + 𝒉𝒆𝒂𝒕 ↔ 𝑯+ + 𝑶𝑯− 

As the temperature increases, more protons and hydroxide ions are formed, which lowers the 

neutral pH (e.g., from ~7 at room temperature to about ~6 at 100 °C). When going the other 
way - correcting a pH value measured at high temperature to lower temperature - the pH 

increases, and in the absence of any strong buffers, this pH change can be quite large even for 

small variations in the ion concentrations.  

If we disregard the initial pH jump, and only focus on what happens after LS brine is injected, 

the observed trend is that of a decreasing Δ𝑝𝐻 with increasing temperature. To some extent 

this happens in the simulations too, but there is not a quantitative match between model and 

data. A few test runs were conducted to see whether the match could be improved by making 

the cation exchange reactions temperature dependent, but a satisfactory match was still not 

achieved. To overcome the dominance of the water dissociation reaction in the model, an 

unrealistically large temperature effect had to be assumed. 

Figure 3 shows that the calculated pH is sensitive to the previous history of the core plug. If 

we model each HS LS HS cycle with a separate simulation run, there is no longer a jump 

in pH as the temperature is increased, and the trend in Δ𝑝𝐻 is opposite to what is observed: 

 

 

Figure 3: Effluent pH during HS LS HS injection at three different temperatures (40°C, 90°C, 130°C). Circles: 
pH measurements taken at room temperatures. Black line: The simulated effluent pH corrected to room 
temperature (same as in Figure 2). Blue line: The simulated pH when running three separate simulation runs, 
one for each temperature, and then stitching the curves together. Again, the simulated pH was corrected to 
room temperature by performing geochemical equilibrium calculations with the produced water as input. 



 

5 
 

Figure 4 gives an indication of why this happens: at the end of each HS LS HS cycle, the 

total number of protons on the exchanger is larger than at the beginning of the cycle. Thus, if 

we continue to simulate at a new temperature without equilibrating all grid blocks with the 

same HS brine, there will be gradients in adsorbed concentrations and pH inside the core 

which affect subsequent calculations. 

 

Figure 4: Average amount of protons on the cation exchanger vs time for the two simulation runs in Figure 3. 
The blue dashed lines represent the case when we equilibrate the cation exchanger with the HS brine separately 
for each temperature. The solid black line shows that we get a different result if we instead modify the 
temperature during a single simulation run. 

Finally, the presence of minerals to buffer the pH is very important in experiments such as 

these. Some simulation runs were conducted to evaluate the effect of mineral dissolution / 

precipitation reactions. For instance, it was found that adding calcite leads to a large increase 

in the modelled pH, both during HS and LS injection (Figure 5). This suggests that very little 

calcite was present. Since the same core plug had been used in several previous experiments, 
it is likely that any calcite initially present had already been flushed out. 

 

Figure 5: The impact of calcite dissolution / precipitation in the model. Circles: Effluent pH of samples taken 
during HS LS HS injection at three different temperatures (40°C, 90°C, 130°C). The measurements were 
performed at room temperature. Solid lines: Simulated effluent pH corrected to room conditions. 
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To sum up, it was not possible to obtain a quantitative match between the observed pH and 

the proposed cation exchange model. The impact of temperature was especially hard to 

model: Because the model did not include any strong pH buffers, simulated results were 

completely dominated by the effect of water self-ionization. Adding calcite led to an even 

poorer fit between model and data, which indicates that little calcite was present in the 

experiments.  

In future work, models accounting for multiple exchange sites and mineral-specific effects 

should be considered, e.g., effects of clay minerals and Feldspars. The interpretation of the 

data is further complicated by the fact that pH is CO2-dependent. This should be investigated 

in more detail, e.g., potential effects of CO2-contamination as effluent samples are collected 

and cooled before measurements are taken. 
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II. Near-well polymer flow in IORCoreSim and INTERSECT  

The flow resistance of polymer solutions in porous media depends on the in-situ conditions, 

such as flow rate, permeability, temperature, and fluid chemistry. The effect of flow rate, or 

shear rate, can be very important to capture, especially when making injectivity forecasts. 

Typically, biopolymer solutions act as either shear thinning or near-Newtonian fluids, while 

synthetic polymers additionally display dilatant, or apparent shear thickening, behaviour at 

large rates (Chauveteau 1981). Depending on the value of the local shear rate, the flow 

resistance may vary by several orders of magnitude (Sorbie 1991).  

The non-Newtonian polymer rheology is hard to model accurately at the field scale. This is 

because field scale simulations require the use of very large grid blocks, frequently on the 

order of tens to hundreds of metres in the horizontal direction. When using conventional 

numerical discretization techniques, fluid velocities near wells, and thus shear rates, are 

severely underestimated. An implication is that well pressures and aqueous phase pressures 

in the reservoir will be incorrectly computed. For shear thinning polymer solutions, the 

numerical error leans in the conservative direction, meaning that calculated injectivities are 
lower than what is really expected to be the case. For polymers exhibiting shear thickening, 

models are likely biased towards an overoptimistic forecast, though the exact outcome also 

depends on whether, and how much, the polymer is degraded (Nødland, et al. 2019).  

Mechanical degradation is hard to capture in reservoir scale models. In a previous study 

(Nødland, et al. 2019), it was found that mm- or cm-sized grid blocks must be used to 

accurately resolve the IORCoreSim degradation equation in radial flow (Figure 6). 

 

Figure 6: Example of how the IORCoreSim mechanical degradation model depends on numerical resolution. 
Hollow circles: Percentage reduction in modelled polymer molecular weight, at steady state, as a function of 
grid block size near the injector. A constant block size, 𝛥𝑟0, was used for the first ~20 cm of the reservoir. Red, 
stippled line: Prediction of the same molecular weight based on analytical calculations (numerical integration). 
For more details, see (Nødland, et al. 2019), especially Fig.2. 

IORCoreSim well model for polymer flooding 

IORCoreSim has a special well model option for handling near-well polymer flow. The 

method is based on the calculation of an average apparent viscosity for grid blocks containing 

wells. Assuming radial flow close to a well, and constant permeability, the pressure difference 

between the well and a point further out in the reservoir is (Thompson og Reynolds 1997) 
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Δ𝑝(𝑟, 𝑡) = 𝑝(𝑟, 𝑡) − 𝑝(𝑟𝑤 , 𝑡) =
1

2𝜋ℎ𝑘
∫

𝑞𝑡(𝑟
′, 𝑡)

𝑟′𝜆𝑡(𝑟′, 𝑡)

𝑟

𝑟𝑤

𝑑𝑟′, 

where 𝑞𝑡 is the total flow rate at radial distance 𝑟 and time 𝑡, 𝑟𝑤 is the well radius, ℎ is the 

penetrated thickness, 𝑘 is absolute permeability, and 𝜆𝑡 is the total (relative) mobility of the 

fluids. For single-phase flow involving polymer, 

1

𝜆𝑡(𝑟, 𝑡)
= 𝜂(𝑟, 𝑡) ⋅ 𝑅𝑘(𝑟, 𝑡) 

where 𝜂 is the apparent viscosity of the aqueous phase containing dissolved polymer, and 𝑅𝑘 
is a permeability reduction factor to account for restricted flow due to polymer adsorption. If 

the flow rate can be treated as constant, 𝑞𝑡(𝑟, 𝑡) = 𝑄: 

Δ𝑝(𝑟, 𝑡) =
𝑄

2𝜋ℎ𝑘
∫

𝜂(𝑟′, 𝑡) ⋅ 𝑅𝑘(𝑟
′, 𝑡)

𝑟′

𝑟

𝑟𝑤

𝑑𝑟′. 

For a given time,  

Δ𝑝(𝑟) =
𝑄𝜂𝑅𝑘

2𝜋ℎ𝑘
⋅ ln (

𝑟

𝑟𝑤
) . 

in which 𝜂𝑅𝑘  provides a measure of the average mobility reduction factor, or resistance factor 

(RF) in the spatial interval from 𝑟 to 𝑟𝑤; letting 𝜂𝑠 denote the solvent viscosity, we have: 

𝜂𝑅𝑘 ≡
1

ln (
𝑟
𝑟𝑤

)
⋅ ∫

𝜂(𝑟′) ⋅ 𝑅𝑘(𝑟
′)

𝑟′

𝑟

𝑟𝑤

𝑑𝑟′ =
𝜂𝑠

ln (
𝑟
𝑟𝑤

)
⋅ ∫

𝑅𝐹(𝑟′)

𝑟′ 𝑑𝑟′

𝑟

𝑟𝑤

. 

For simplicity, near-well gradients in the permeability reduction factor are ignored, hence we 

simplify to 𝜂𝑅𝑘 = 𝜂 ⋅ 𝑅𝑘, where 𝜂 is the average apparent viscosity in the radial interval. By 

performing the coordinate transformation 𝑟′ → u = ln (r′), we get: 

𝜂 =
1

ln (
𝑟
𝑟𝑤

)
⋅ ∫

𝜂(𝑟′)

𝑟′

𝑟

𝑟𝑤

𝑑𝑟′ =
1

ln (
𝑟
𝑟𝑤

)
⋅ ∫ 𝜂(𝑒𝑢)

ln(𝑟)

ln(𝑟𝑤)

𝑑𝑢. 

In IORCoreSim, the areal-average radius, 𝑟𝐴, is used as upper limit for the integration; for a 

vertical well: 

𝑟𝐴 = √
Δ𝑥 ⋅ Δ𝑦

𝜋
 . 

The integral is approximated with the midpoint rule: By dividing the total interval from 𝑟𝑤 to 

𝑟𝐴 into N subintervals, and letting 𝑟0, 𝑟1, … , 𝑟𝑛 denote the subinterval edges, we get 

𝜂 ≈
1

ln (
𝑟
𝑟𝑤

)
⋅ ∑𝜂𝑖 ⋅ ln (

𝑟𝑖
𝑟𝑖−1

)

𝑁

𝑖=1

, 
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where 𝜂𝑖 = 𝜂(
𝑟𝑖−1+𝑟𝑖

2
) is the apparent viscosity evaluated at the midpoint of interval 𝑖. To 

calculate 𝜂𝑖, the in-situ shear rate at each interval midpoint, 𝛾�̇�, is needed. Assuming velocity 

to scale as 1/𝑟, we compute each �̇�𝑖 from a single reference shear rate, 𝛾�̇�: 

𝛾�̇� = 𝛾�̇� ⋅
𝑟𝑖−1 + 𝑟𝑖
𝑟𝑤 + 𝑟𝐴

 

The reference shear rate is taken to be the shear rate at the well block midpoint. In turn, this 

reference shear rate is estimated from a finite-difference discretization appropriate for 

approximating radial flow near the well, see the IORCoreSim manual for more details. 

Accounting for mechanical degradation near wells 

When mechanical degradation is included, the molecular weight of the polymer should vary 

with distance. Capturing this gradient directly is impossible with standard grid sizes used in 

field scale reservoir simulation, however it might not be necessary because in radial flow, 

almost all of the degradation takes place within the first few mm or cm after the injection 

point (Nødland, et al. 2019) (Stavland, et al. 2021).  

As an approximation, the IORCoreSim well model uses the degradation equation proposed in 

(Lohne, et al. 2017) to iterate towards a single steady-state molecular weight for the polymer 

in the well block. The main difference from the regular degradation solver is that we employ 

an "integrated” or “effective” degradation rate, 𝑓𝑟𝑢𝑝
𝑒𝑓𝑓

, to account for varying residence times in 

different areas close to the well: 

𝑓𝑟𝑢𝑝
𝑒𝑓𝑓 = ∑𝑓𝑟𝑢𝑝,𝑖 ⋅

𝑟𝑖
2 − 𝑟𝑖−1

2

𝑟𝐴
2 − 𝑟𝑤2

⋅ Δ𝑡.

𝑁

𝑖=1

 

In the above expression, Δ𝑡 is the time step and 𝑓𝑟𝑢𝑝,𝑖 is the molecular rupturing rate 

computed by assuming shear rate 𝛾�̇� and apparent viscosity 𝜂𝑖 = 𝜂(𝛾�̇�).  

Example: Approximating radial flow with Cartesian grids in IORCoreSim 

To exemplify the impact of numerical errors on polymer injectivity calculations, we revisit 

validation case 2 from (Li and Delshad 2014). This is a single-phase 2D scenario, in which a 

0.3 wt% polymer solution is continuously injected from an injection well placed in the middle 

of a homogeneous and isotropic reservoir. The injection rate is kept constant at 4000 cubic 

feet per day. Sixteen peripheral production wells are placed out at a fixed radial distance from 

the injector (𝑟𝑒 = 350 ft) and set to operate at a constant pressure of 1200 psi.  This is done to 
mimic a fixed pressure boundary condition at the exterior radius. Polymer adsorption and 

inaccessible pore volume effects are ignored. The apparent viscosity of the polymer solution 

is calculated with Meter's equation (Meter and Bird 1964). 

Figure 7 compares injection well pressures for three different simulation runs: two runs made 

with a coarse Cartesian grid (Δ𝑥 = Δ𝑦= 70 ft), and one conducted in a much finer, radial grid. 

The well pressures are plotted versus the number of pore volumes injected in the radial grid. 

For reference, the figure also includes an analytical solution based on assuming a perfect 

frontal displacement.   
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Figure 7: Injector bottom-hole pressure during polymer injection for (Li and Delshad 2014) example. The figure 
demonstrates the effect of using a Cartesian grid to mimic radial flow, as well as the impact of using the 
IORCoreSim polymer well model. 

Using the coarse grid without modification overestimates the well pressure by about ~30 %. 

Even the fine scale radial model gives some error, mostly due to numerical dispersion of the 

polymer front (Lantz 1971). However, at least in this case, the IORCoreSim well model yields 

the correct well pressure after several pore volumes of polymer injection. On the other hand, 

Figure 8 shows that if we use the Peaceman radius as upper limit for the numerical 

integration, the well pressure becomes significantly lower.  

 

Figure 8: Injector bottom-hole pressure during polymer injection for (Li and Delshad 2014) example. The 
dashed-dotted line shows the result when we use the Peaceman radius as upper limit in the IORCoreSim well 
model. The dashed line shows an example where the near-well shear thinning effect is approximated by 
assuming a negative skin factor for the well. 
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In a square Cartesian grid, the areal-average radius is larger than the Peaceman radius by a 

factor of 
4

√2𝜋𝑒−𝛾 ≈ 2.84 (Peaceman 1983), which leads to a substantial decrease in the average 

apparent viscosity compared to when 𝑟𝐴 is used. Because (Li and Delshad 2014) integrated 

out to the Peaceman radius, we are not able to reproduce their reported results.  

For comparison, Figure 8 also shows the outcome of using the negative skin factor approach 

proposed by (Li, R. and Delshad 2017), 

𝑠𝑘𝑖𝑛 =
∫

𝜂(𝑟)
𝑟  𝑑𝑟

𝑟𝑜
𝑟𝑤

𝜂(𝑟𝐴)
− ln (

𝑟𝑜
𝑟𝑤

), 

where 𝑟𝑜 is the Peaceman radius. 

Example: Approximating radial flow in INTERSECT 

Figure 9 shows two examples of using INTERSECT to simulate the same scenario. In one 

case, the simulator greatly overpredicts the well pressure (left plot, blue solid line). The 

explanation is that in this run, the in-situ shear rate for the well blocks was computed from 

arithmetic averages of neighbouring edge-velocities in the x- and y-directions. Due to the 

symmetry of the problem, these component velocities are similar in magnitude, but have 

opposite signs, hence the shear rate becomes zero, and the polymer is falsely predicted to be 

in the Newtonian flow regime (𝜂 ≈ 𝜂0).  

If quadratic averaging is used instead, results are more in line with IORCoreSim (not shown). 

While this example scenario is not very representative for real field cases, it shows that it is 

important to be aware of how shear rates are calculated in the simulator. 

Attempts were made to capture near-well polymer flow by using Python scripts to override 

the default well block calculations in INTERSECT; that is, by modifying grid block properties 

from outside the simulator. In INTERSECT 2020.1, it is impossible to modify the apparent 

viscosity from the outside during a simulation run, therefore the endpoint relative 

permeability to water was modified instead.  Figure 9 demonstrates that for one-phase flow, 

it was possible to obtain a very good match with IORCoreSim; see especially the right plot. 

 

Figure 9: Injector bottom-hole pressure during polymer injection for (Li and Delshad 2014) example: 
Comparison between IORCoreSim well model and two INTERSECT runs. Note that no maximum limit was set 
for the pressure in these simulations.  

Attempts to generalize the approach to two-phase flow of water and oil has so far been 

unsuccessful. Even for one-phase flow, using Python to modify well block properties led to a 

large increase in the CPU running times, due to extra convergence difficulties. 
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However, it should be mentioned that INTERSECT also has a special well block option: the 

user can input, for each well-cell connection, an effective radius from the well at which to 

calculate the well block shear rate. The simulator will then compute the magnitude of the well 

block velocity as the maximum of the ordinary grid block velocity and 

|𝑢𝑤| =
|𝑞𝑤

𝑘 |

2𝜋𝑟𝑒𝑓𝑓ℎ𝑘
 , 

where 𝑞𝑤
𝑘  is the water volumetric flow rate through the connection, and ℎ𝑘 is the connection 

thickness. For shear thinning polymers, IORCoreSim results can be approximated by 

choosing the effective radius so that the calculated viscosity at 𝑟𝑒𝑓𝑓  equals the average 

viscosity in the IORCoreSim well model, see Figure 10 for an example. 

 

Figure 10: Injector bottom-hole pressure for (Li and Delshad 2014) example. Comparison of analytical solution 
assuming a perfect frontal displacement (red, solid lines) and four INTERSECT simulations, using different 
choices of the effective well-block radius. The blue, stippled line represents the case when 𝑟𝑒𝑓𝑓 was selected to 

produce the same apparent viscosity as the IORCoreSim well model (for a well flow rate of 4000 𝑓𝑡3/𝑑). 

Note that the effective radius option presupposes a constant flow rate at the well. However, it 

may still give acceptable results when flow rates are changing in time, e.g., for constant 

bottom-hole pressure injectors, provided the viscosity curve is not too sensitive to variations 

in near-well flow rates. 
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III. IORCoreSim case study in a channeled reservoir 

For performance reasons we choose a relatively small field case: the first permeability 

realization of the Egg model geological ensemble (Jansen, et al. 2014). The well placement is 

shown in Figure 11. The eight injectors and four producers are all vertical, and they are 

perforated throughout the entire formation thickness (28 m). Porosity is assumed uniform, φ 

= 0.2.  For ease of interpretation, a constant initial water saturation is used in all active grid 

cells, 𝑆𝑤𝑖 = 0.25.  

 

Figure 11: Horizontal permeability in top layer of the Egg model. There are 60x60x7 cells, of which 18553 are 
active. Grid block sizes are 8x8x4 meter. The seven layers have a strong vertical correlation, such that the 
permeability field is almost 2-dimensional (82 mD-7 D, arithmetic average 1.12 D). The ratio of horizontal to 
vertical permeability is ~10. 

Rock-fluid properties 

We consider injection of synthetic sea water (SSW) into a reservoir filled with oil and, for 
simplicity, SSW. The temperature is assumed constant, T=20°C. The water viscosity is 

assumed to be 1.07 mPas, while the oil viscosity is 20.0 mPas. The oil density is 900 kg/m3. 

Capillary pressure is ignored in the simulations.  

A set of generic relative permeability curves, representative of mixed-wet formations, is used 

(Figure 12, left plot); note that these are different from the ones reported in (Jansen, et al. 

2014). Capillary pressure is ignored in the simulations. 

 

Figure 12: Left: Relative permeability curves used in the Egg model simulations (solid lines, modified compared 
to Jansen et al. 2014). Also shown are approximate smoothed curves computed with Corey power-law functions 
(dashed lines).  Right: Fractional flow curves calculated from the Corey functions. 
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From the Welge tangent method (Welge 1952), the front saturation during a linear 

displacement with sea water is approximately 47 %, while the average saturation behind the 

front at breakthrough is 53 % (Figure 12, right plot). The expected oil recovery factor during 

core flooding is 40-47 % of the original oil in place (OOIP) after injecting 0.5-1 pore volumes 

(Figure 13). If the viscosity of the injected water is increased to 10 mPas, these numbers 

increase by roughly 15 %, which indicates a good EOR potential for polymer flooding. 

 

Figure 13: Oil recovery computed from Buckley-Leverett theory, i.e., as expected in a linear core flood with no 
gravity or capillary pressure effects. The circles correspond to 𝜇𝑤 = 1.07 mPas,  𝜇𝑜 = 20 mPas (“baseline 
waterflooding”) 

For cases with polymer, the injected polymer concentration is always 1500 ppm. We consider 

two different HPAM polymers: FLOPAAM 3530S, with an initial molecular weight 15 MDa, 

and FLOPAAM 3630S, with molecular weight 20 MDa. The input polymer properties are 

taken from (Lohne, et al. 2017), with some notable exceptions; see discussion further below.  

Table 1 contains additional details on the assumed rock- and fluid properties. 

  

Figure 14: IORCoreSim apparent viscosity for two HPAM polymers dissolved in SSW (T=20°C, 1500 ppm). Note 
that the curves do not account for the effect of depletion layers. The stippled curve in the right plot corresponds 
to a ~18 % Mw reduction and indicates that the viscosity loss due to mechanical degradation is relatively small 
at the chosen flow rate. 
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Well schedule 

The total simulation time is 10 years. Water is injected at constant rate 79.5 m3/day with an 

upper bottom-hole pressure limit of 271 bar, which is close to the estimated fracturing 

pressure when assuming a fracture pressure gradient of ~0.14 bar/m. All producers are set to 

operate at a constant bottom-hole pressure of 195 bar.  

We first simulate a baseline waterflood, followed by a “screening run” in which the effects of 

polymer are approximated by injecting a Newtonian fluid of viscosity 10 mPas, about 10 

times as viscous as water; this is in the right “ballpark” for the expected in-situ resistance 

factor (see Figure 14).  For the screening run, as well as for simulations with actual polymer, 

injection of viscous brine is commenced after 5 years and terminated after 6 years (a slug of 

approximately ¼ pore volumes).  

Simulation results 

For waterflooding with SSW, the absolute oil recovery is 47.9 % OOIP after 10 years. This 

number increases to 51.8 % when injecting the 10 mPas Newtonian fluid, to 51.1 % when 

injecting the 3530S polymer, and to 52.4 % when injecting 3630S. The left plot of Figure 15 

shows the relative increase of oil production as a function of time. For both polymers, most 

of the incremental oil is produced after commencing the second waterflood. For 3530S, the 

Newtonian model gives the same recovery as the polymer model during the first year of post-

polymer water injection. In contrast, the response is much quicker for the 3630S polymer, 

which is no surprise considering the larger molecular weight of this polymer.   

 

Figure 15: Left plot: Simulated (total) oil production as a function of time for two HPAM polymers and a 
Newtonian fluid. The y-axis shows the relative increase in oil recovery compared to the baseline waterflood. The 
grey vertical bars show the timing of the polymer slug. The dashed lines show results in which the IORCoreSim 
well model was not used.  Right plot: Bottom-hole pressure at one of the injection wells. 

Obviously, the additional flow resistance of 3630S compared to 3530S necessitates higher 

injection pressures to keep a prescribed injection rate. When injecting HPAM polymer 

solutions, one should always check whether shear thickening could cause problems. It is then 

important to use the well model implemented in IORCoreSim, which corrects for non-

Newtonian flow and mechanical degradation close to the wellbore. The right plot of Figure 15 

indicates that injectivity could become an issue for the 3630S polymer, especially if no 

fracturing of the formation is allowed. 

The oil recovery curves suggest that the polymer is not severely degraded in the scenario 

considered here. Indeed, separate calculations in radial geometry indicate that the 3530S 

polymer will experience very little, if any, degradation. This number is based on analytical 

calculations for steady-state, single-phase flow without any inaccessible pore volume, 

depletion layers, or permeability reduction effects (Nødland, et al. 2019). Even if we account 
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for these effects, simulations in finely gridded radial geometry indicate that the conclusion still 

holds. On the other hand, the 3630S polymer is expected to undergo some degradation upon 

entering the reservoir, but no more than ~20 % in the least permeable injection zones. Since 

most of the injected polymer is allocated to high permeability layers, this number is likely 

pessimistic, especially considering that degradation levels are very low around most of the 

injectors, and that polymer from adjacent layers mix due to crossflow. To summarize, shear 

thickening and degradation is expected to influence the results to some extent for 3630S, and 

much less so for 3530S. Of course, this conclusion might no longer be true if the well operating 

constraints are changed. 

The right plot of Figure 15 further highlights the fact that for non-Newtonian fluids, calculated 

well pressures are affected by the coarse gridding. This error, which occurs for both shear 

thinning and shear thickening polymers, is usually exacerbated when increasing the grid block 

dimensions (Li and Delshad 2014), as one would do in a realistic offshore field setting.   

If we disregard near-well behavior, the polymer solutions behave as either near-Newtonian or 

shear thinning fluids. However, simulations of polymer flooding do not just depend on 

viscosity behavior; predictions are also sensitive to assumptions made about polymer 

adsorption and depletion layers; a form of inaccessible pore volume. In some respects these 

are competing effects, but there is one crucial difference: adsorption reduces the permeability 

to water. Potentially, this could have a large impact on reservoir sweep in the post-polymer 
period. 

In the simulations presented so far, the maximum level of adsorption was set ~5 times lower 

than values matched to laboratory experiments in water-wet outcrop Berea and Bentheimer 

cores (Lohne, et al. 2017). Slight adjustments were also made to the depletion layer model, and 

the tortuosity factor was allowed to depend on porosity and water saturation via Archie’s law 

(Archie 1942). If we instead use the originally reported input values for the adsorption and 

depletion layer models, the polymer is delayed at the producers, produced polymer 

concentrations are lower, but the predicted EOR response is greater (Figure 16)  

 

Figure 16: Left plot: Oil recovery results from Figure 7 compared with a new simulation for 3530S with higher 
levels of adsorption and permeability reduction, plus the original depletion layer model from (Lohne, Nødland, 
Stavland, & Hiorth, 2017). Right plot: Corresponding polymer production curves at one of the producers. 

This is because the “water-wet” model predicts significantly higher permeability reduction 
than the “mixed-wet” model, and more variability inside the reservoir. The polymer front 
moves more slowly, but the level of mobility reduction is increased. Moreover, since oil 
permeability is assumed unaffected by polymer adsorption, reservoir sweep is improved in the 
second waterflood. Once again, higher resistance factors imply lower injectivity; for this 
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simulation, some of the injectors had to switch from being rate-controlled to being pressure-
controlled during polymer injection (not shown).   
 
A very high level of adsorption may not be realistic for reservoirs that are candidates for 
polymer flooding, but the simulation results demonstrate that permeability reduction is an 
important effect to consider in heterogeneous reservoirs. Here, it has a positive impact on oil 
recovery, but in other circumstances it is going to be detrimental.   
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IV. Extending polymer flooding functionality in OPM 

OPM comes with an implementation of the tabled-based E100 polymer model, which is an 
“add-on” to the Black-Oil module. The OPM Black-Oil module solves a set of mass balance 

equations,  

𝜕

𝜕𝑡
(𝜙𝑟𝑒𝑓𝐴𝛼) + ∇𝑢𝛼⃗⃗ ⃗⃗  + 𝑞𝛼 = 0, 

for pseudo-components and phases 𝛼 = 𝑤, 𝑜 , 𝑔; water, oil, and gas (Rasmussen, et al. 2021). 
The aqueous phase is assumed to consist of only water, while the other two phases can include 
a mixture of oil and gas. The accumulation terms, representing the amount of mass of each 

component, are 

𝐴𝑤 = 𝑚𝜙𝑏𝑤𝑠𝑤, 

𝐴𝑜 = 𝑚𝜙(𝑏𝑜𝑠𝑜 + 𝑟𝑜𝑔𝑏𝑔𝑠𝑔), 

𝐴𝑔 = 𝑚𝜙(𝑏𝑔𝑠𝑔 + 𝑟𝑔𝑜𝑏𝑜𝑠𝑜), 

where 𝑚𝜙 is a porosity multiplier to account for rock compressibility, 𝑏𝛼 =
1

𝐵𝛼
=

𝑉𝑠𝑢𝑟𝑓𝑎𝑐𝑒,𝛼

𝑉𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟,𝛼
 is the 

inverse formation volume factor of phase 𝛼, 𝑟𝑜𝑔 is the ratio of vaporized oil to gas in the gaseous 

phase, and 𝑟𝑔𝑜 is the ratio of dissolved gas in the oleic phase. The pseudo-component velocities 

are similarly decomposed: 

𝑢𝑤⃗⃗ ⃗⃗  ⃗ = 𝑏𝑤𝑣𝑤⃗⃗ ⃗⃗  , 

𝑢𝑜⃗⃗ ⃗⃗ = 𝑏𝑜𝑣𝑜⃗⃗⃗⃗ + 𝑟𝑜𝑔𝑏𝑔𝑣𝑔⃗⃗⃗⃗ , 

𝑢𝑔⃗⃗ ⃗⃗ = 𝑏𝑔𝑣𝑔⃗⃗⃗⃗ + 𝑟𝑔𝑜𝑏𝑜𝑣𝑜⃗⃗⃗⃗ . 

The phase fluxes, 𝑣𝛼⃗⃗⃗⃗ , are calculated from the extended Darcy law (Muskat and Meres 1936): 

𝑣𝛼⃗⃗⃗⃗ = −𝜆𝛼𝑲(∇𝑝𝛼 − 𝜌𝛼𝑔 ), 

where 𝑲 is absolute permeability, 𝜆𝛼 =
𝑘𝑟𝛼

𝜇𝛼
 is the mobility of phase 𝛼, 𝑝𝛼 is pressure, 𝜌𝛼 is 

density, and 𝑔  is the vector of gravitational acceleration.  

When polymer is included, an additional equation is included for the polymer transport: 

𝜕

𝜕𝑡
(𝜙𝑟𝑒𝑓𝐴𝑝) + ∇(𝑏𝑤𝑣𝑝⃗⃗⃗⃗ 𝐶𝑝) + 𝑞𝑤𝐶𝑝 = 0. 

The accumulation term for polymer is 

𝐴𝑝 = 𝑚𝜙𝑏𝑤𝑠𝑤(1 − 𝑠𝑑𝑝𝑣)𝐶𝑝 + 𝜌𝑟𝐶�̂�

1 − 𝜙𝑟𝑒𝑓

𝜙𝑟𝑒𝑓
, 

where 𝑠𝑑𝑝𝑣  is an inaccessible (dead) pore volume factor, 𝐶𝑝 is the polymer mass concentration, 

𝐶�̂� is the adsorbed concentration, and 𝜌𝑟  is rock density. The polymer flux is computed from: 

𝑣𝑝⃗⃗⃗⃗ = −
𝜆𝑝
𝑒𝑓𝑓

𝑅𝑘
𝑲(∇𝑝𝑤 − 𝜌𝑤𝑔 ). 

Similarly, the water-flux is modified to 

𝑣𝑤⃗⃗ ⃗⃗  = −
𝜆𝑤
𝑒𝑓𝑓

𝑅𝑘
𝑲(∇𝑝𝑤 − 𝜌𝑤𝑔 ). 
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Here, 𝑅𝑘 is a permeability reduction factor, 𝜆𝑤
𝑒𝑓𝑓

 is the water mobility accounting for effects of 

polymer, and 𝜆𝑝
𝑒𝑓𝑓

 is the polymer mobility. Note that the two mobilities might differ, if using 

the Todd-Langstaff mixing model (Todd and Longstaff 1972).  

In the source code, 𝜆𝑤
𝑒𝑓𝑓

is computed from the ordinary water mobility, 𝜆𝑤, by a multiplication 

with the inverse of the polymer relative viscosity. 

Transport of polymer Mw, and linking Mw to viscosity 

OPM includes an experimental, and largely undocumented, feature in which a polymer 
molecular weight component is transported through the reservoir in the same way as the 
polymer mass concentration.  The implemented transport equation for molecular weight is 

obtained by multiplying the terms in the conservation law for polymer mass by Mw: 

𝜕

𝜕𝑡
(𝜙𝑟𝑒𝑓𝐴𝑝𝑀𝑤) + ∇(𝑏𝑤𝑣𝑝⃗⃗⃗⃗ 𝐶𝑝𝑀𝑤) + 𝑞𝑤𝐶𝑝𝑀𝑤 = 0. 

This approach makes it possible to compute the apparent viscosity of the polymer solution as 
function of local rock-fluid properties. In the current release version of OPM, a variant of the 
Huggins equation (Huggins 1942) is used to compute polymer apparent viscosity: 

𝜂0

𝜂𝑠
= 1 + 𝛾(𝑋 + 𝜅𝑋2), 𝑋 = [𝜂]𝐶𝑝 . 

The model computes the zero-shear viscosity, 𝜂0, as a quadratic function of the product of 
polymer concentration and polymer intrinsic viscosity, the latter which is related to molecular 
weight by the Mark-Houwink relationship: 

[𝜂] = 𝐾 ⋅ 𝑀𝑤
𝑎 . 

The model does not account for non-Newtonian flow; the apparent viscosity is simply set equal 

to the zero-shear viscosity. To improve the situation, some effort has been spent in translating 
the analytical shear thinning models from IORCoreSim to OPM, i.e., Meter’s model (Meter and 
Bird 1964) and the Carreau-Yasuda model (Yasuda, Armstrong and Cohen 1981). Figure 17 

shows a simulation example using the Carreau-Yasuda model; the required input parameters 
were the same as those fitted to a 20 MDa HPAM polymer in (Lohne, et al. 2017), but polymer 
adsorption and inaccessible pore volume effects were ignored.  

 

Figure 17: Simulated injection well pressure for a one-phase, 1D test case in which the Carreau-Yasuda model was 
used to describe shear thinning. A 1500 ppm polymer solution was injected at a constant flow rate of 220 𝑚3/𝑑 
for 150 days. The initial water saturation was 0.2, while the oil viscosity was 7.0 mPas. Capillary pressure was 
ignored. The input parameters were the same as those fitted to a 20 MDa HPAM polymer in (Lohne, et al. 2017). 
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Note that there is some mismatch between OPM and IORCoreSim. This is mainly due to how 

in-situ shear rate is calculated: in OPM, the default implementation includes the mobile water 

saturation in the denominator for the shear rate, specifically �̇� ∝
1

√𝑆𝑤−𝑆𝑤𝑟
. In IORCoreSim, the 

total water saturation is used instead. The total water saturation can also be used in ECLIPSE 

100 (E100), by setting entry 228 of the OPTIONS keyword to 1. Since this is not currently 
possible in OPM, we had to alter our original implementation of the shear-rate formula: 

 

Figure 18: The same case as in Figure 17, except that the in-situ shear rate in OPM was set proportional to 
1

√𝑆𝑤
. 

Challenges with implementing Mw-dependent shear thinning models in OPM 

In the existing OPM implementation, polymer viscosity correction terms, including shear 
multipliers, are only computed at edges between grid cells (based on upstream weighting). In 

IORCoreSim, apparent viscosities are computed on a grid block-basis, and it was desired that 
the same should be possible in OPM. Thus, one challenge was: How to calculate representative 
shear rates for each grid block? So far, the implemented shear thinning models have only been 

applied on 1D cases. More work remains on how to average permeability and flow rate terms 
for 2D and 3D cases, which is needed when modelling anisotropic or heterogeneous 
formations. 

We further remark that the calculation of relative permeability had to be changed. In OPM, 

relative permeabilities are not kept track of directly, only mobilities. Thus, whenever 𝑘𝑟𝑤 is 
requested, it must be computed from the current mobility: 

    Evaluation relativePermeability(unsigned phaseIdx) const 
    { 
        // warning: slow 
        return fluidState_.viscosity(phaseIdx) * mobility(phaseIdx); 
    } 

 

This was found to be problematic: The function that updates cell-based shear rates needs to 
know the relative permeability of the water phase, but due to the way the simulation loop is 

structured, it calls relativePermeability() after multiplying the water mobility with polymer 
correction terms. In other words, the mobility used inside the above C++ function will not be 

𝑘𝑟𝑤 divided by the solvent viscosity, 

𝜆𝑤 =
𝑘𝑟𝑤

𝜂𝑠
, 
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as was the intention, but instead: 

𝜆𝑝 =
𝜆𝑤

𝜂𝑟𝑒𝑙𝑅𝑘
=

𝜆𝑤

𝜂𝑝
⋅
𝜂𝑠

𝑅𝑘
=

𝑘𝑟𝑤

𝜂𝑝𝑅𝑘
. 

 

To produce the above simulation results, the relativePermeability()-function was altered to 

compute 𝑘𝑟𝑤 each time the function is called; the extent to which this slows down the simulator 
has not been tested. 

 

Challenges with implementing shear-thickening and mechanical degradation 

The main “conceptual” difficulty was how to account for non-Newtonian flow effects near wells, 

as well as mechanical degradation, e.g.: 

• How to account for a spatially varying viscosity that may be both shear thinning and 
shear thickening? (i.e., as in the IORCoreSim well model) 

o Is it enough to add extra terms to the well pressure, and/or modify the well 
productivity index?  

o Or do we need to change the aqueous phase viscosity inside the reservoir too? 

(more complex in terms of coding) 

• How to estimate mechanical degradation when using an implicit time-discretization? 

• How to make the degradation solver computationally efficient? 

o Avoid slow convergence… (too many non-linear iterations) 

 

Other challenges  

There were challenges associated with “best coding practices”, e.g.: 

• OPM makes heavy use of modern C++, including template metaprogramming to move 
numerically intensive operations from runtime to compile-time. While this is done for 
a good reason, it makes it harder to implement new models into the code base. 

• The code base is starting to get quite large, and simultaneous modifications must be 
made in many areas of the program, which increases the risk of introducing bugs. 

o The main difficulty was related to the well-reservoir coupling.  

Finally, convergence problems were sometimes experienced when using the existing table-

based polymer model, even for cases that ran perfectly fine with E100. The reason why OPM 

was less robust than E100 has not been discovered. 
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Future work/plans 

The work on implementing extra polymer functionality into OPM was postponed due to other 

tasks (e.g., report writing). The current ambition is to continue this work. 

Similarly, the work on pH developments in sandstones was discontinued, mainly due to 

difficulties in interpreting the data. If time allows, more work might be done in the future.  

However, it is likely that attention will be shifted towards the modelling of experiments in 

chalk, where the mineralogy is less complicated. In particular, the plan is to look at how one 

can model the separation of ions and tracers with surface complexation and diffuse layer 

models; possibly in combination with allowing variable diffusion speeds for different species. 

Dissemination of results 

So far, results have been presented in project reports for the National IOR Centre of Norway. 

If the work on implementing polymer models in OPM is successful, the plan is to summarize 

it in a journal paper. To this end, it will be necessary with much more testing, as well as 

discussions with other implementers of the code base. 

Another goal is to publish one or more articles on Smart Water simulations. 
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Tables 

Table 1: Reservoir and fluid properties used in Egg model case study (adapted from table 1 of Jansen et al. 2014) 

Symbol Variable Value Unit 

h Grid-block height 4 m 

Δx, Δy Grid-block length/width 8 m 

ϕ Porosity 0.2 - 

co Oil compressibility 1e-5 1/bar 

cw Water compressibility 5e-5 1/bar 

cr Rock compressibility 4.934e-5 1/bar 

µw Water (solvent) viscosity 1.07 mPas 

µo Oil viscosity 20 mPas 

ρw Water density at 200 bar 1000 kg/m3 

ρo Oil density at 200 bar 900 kg/m3 

krw
0 

End-point relative permeability, 
water 0.4 - 

kro
0 End-point relative permeability, oil 1 - 

nw Corey exponent, water 2.5  

no Corey exponent, oil 3.2  

Sor Residual oil saturation 0.2  

Swi Initial water saturation 0.25 - 

pc Capillary pressure 0 bar 

T Temperature 20 °C 

rw Well radius 0.1 m 

pi Initial reservoir pressure 200 bar 
Swi 

Initial water saturation 0.25 - 
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