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1. Executive summary 

This project addresses the modelling and simulation of non-Newtonian fluids 

with applications to IOR and drilling and well technology. Non-Newtonian fluid 

flow modelling is acutely important in many industrial and medical application 

from enhanced oil recovery to blood flow in arteries and polymer processing. 

The behaviour of those non-Newtonian flows is complex and requires a careful 

treatment of the physical processes involved as well as accurate and efficient 

numerical techniques.  

Within this project, we first provide a flexible and state-of-the-art framework 

based on a classical scientific computing approach. We also apply the new 

concept of Physics-informed Machine Learning to non-Newtonian flow 

simulation.  
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2. Introduction and background 

There are many models aiming at describing non-Newtonian flow, however, we 

focus on two of viscoelastic type, namely the Olroyd-B type [1] and the FENEP 

(Finitely Extensible Nonlinear Elastic) model [2]. In contrast to Newtonian (resp. 

quasi-Newtonian) fluids where the stress tensor is a linear (resp. nonlinear) 

functional of the velocity and pressure field, the viscoelastic flows require to 

consider another constitutive equation where the stress tensor is another 

unknown. Simulation of such problem class becomes quite challenging when the 

amount of fluid elasticity is highly increased. Thus, requiring stabilization 

techniques to avoid failure of the numerical simulation or spurious oscillations. 

This phenomenon is known as the High Weissenberg Number problem (HWNP) 

[3]. Another challenge comes from the hyperbolic constitutive equation when 

the advection term becomes dominant. In the context of Finite element 

methods, various strategies have been considered. We can mention the SUPG 

(Streamline Upwind Petrov Galerkin) method of Marchal and Crochet [4] and its 

non-consistent and only first order accurate counterpart the SU (Streamline 

Upwind) method. Discontinuous Galerkin methods are also a quite attractive 

approach. They have been considered by Fortin et Fortin [8], Baijens[9] and 

Yurun [10], where the pre-eminence of DG methods over the SUPG was shown. 

In [Baijens [9], a finite element approach fulfilling the Ladyzenskaya Babuska 

Brezzi conditions is considered for the mass and momentum conservation 

equations while DG is used for the hyperbolic constitutive equation. 

Unfortunately, all these traditional numerical methods for solving PDEs, such as 

finite difference, finite elements and Galerkin methods have mostly failed to 

address the shortcomings fully and efficiently.  

Recently, Raissi et al. [11], demonstrated that it is possible to combine Machine 

Learning approaches with more traditional physics approaches. These so-called 

Physics-informed Machine Learning approaches are designed to obtain solutions 

of general nonlinear PDEs, and they may be a promising alternative to 

traditional numerical methods for solving PDEs, such as finite difference and 

finite elements methods. The core idea of PINN is to explicitly embed the 

physical laws (e.g., the governing partial differential equations, initial/boundary 

conditions, etc.) into a deep neural network, constraining the network’s 

trainable parameters within a feasible solution space.  
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3. Results 

The main result of this project resides in the establishment of flexible simulation 

frameworks. Our initial focus consisted in providing a state-of-the-art Finite 

Element/Discontinuous Galerkin discretization module within the DUNE toolbox 

[12]. Further, we focused on the study of innovative approaches based on the 

application of deep learning techniques to viscoelastic PDEs. 

3.1 Study and implementation with high order discretization methods 

The first part comprised in implementing a splitting scheme that is used to 

decouple pressure and velocity followed by solving the constitutive equation for 

the stress. We used the Taylor-Hood finite element for the Velocity-Pressure 

System and a DG discretization for the constitutive equation. The 

implementation is based on the new Python frontend of the Dune-Fem [13,14] 

to the open-source framework DUNE. We first considered the case of quasi-

Newtonian models before extending it to viscoelastic models such as Oldroyd-B 

and FENEP. We also provided an effective framework for hp-adaptive 

discretization of such models. Different scheme splitting and projection 

strategies are also available within the framework. The modules are available on 

Gitlab: https://gitlab.dune-project.org/birane.kane/dune-visco-fempy 

3.2 Study and implementation with Physics-informed Machine Learning 

In the second part of the project, we introduced a new framework where we 

explicitly embed physical laws aiming at describing viscoelastic fluid flow (e.g., 

Oldroyd/FENEP equations) to constrain neural networks for training a reliable 

model. The effectiveness of the proposed framework is demonstrated through 

some benchmark tests. To our knowledge, this is the first time the concept of 

deep learning is applied to viscoelastic fluid flow modelling. The implementation 

of our model is based on a suitable open-source numerical modelling platform 

using the TensorFlow library. 
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4. Conclusion(s) 

The achievement of this project is twofold. In addition to the initial goal of 

providing a flexible and state-of-the-art framework based on a classical scientific 

computing approach; we applied the new concept of physics-informed Machine 

Learning to viscoelastic flow simulation. This pioneering approach is opening 

new horizons where deep learning methods will be used to improve existing PDE 

solvers with data from the experimental sites and PDEs be used to form a 

backbone prior for deep learning methods. 

 

5. Future work/plans 

We are currently completing a paper on Physics-informed Machine Learning 

application to viscoelastic flows. This paper focuses on the effectiveness of deep 

learning techniques with regards to forward and inverse problems in complex 

flows. Oldroy-B and FENEP models are studied and evaluated through some 

benchmark tests. We hope to submit it by the end of this year. 

 

6. Dissemination of results 

All the implementation in this project is released open-sourced: 

https://gitlab.dune-project.org/birane.kane/dune-visco-fempy 
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