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Wednesday 14th October 

12.00-12.15: Randi Valestrand, NORCE: Welcome and introduction 

12.15-12.45: Vedad Hadziavdic, Wintershall Dea: “Ensemble based modelling and 4D in 

Wintershall Dea – experience and challenges.” 

12.45-13.15: Tao Feng, Equinor: “Conditioning reservoir models on Well2Seis attributes.”  

13.15-13.45: Rolf J. Lorentzen, NORCE: “A workflow for 4D seismic history matching 

demonstrated on the Norne field.” 

13.45-14.00: Break 

14.00-14.30: Geir Evensen, NORCE: “Consistent Formulation and Error Statistics for Reservoir 

History Matching: Implications for Seismic History Matching.”   

14.30-15.00: Dario Grana, University of Wyoming: “Geophysical monitoring of CO2 

sequestration in deep saline aquifers.” 

Thursday 15th October 

12.00-12.05: Welcome 

12.05-12.30: Tuhin Bhakta, NORCE: "Discrimination of changes in pressure-saturation and 

porosity fields from time-lapse seismic data using an ensemble-based method." 

12.30-13.00: Jarle Haukås, Schlumberger: “4D seismic history matching workflows in DELFI.” 

13.00-13.30: Romain Chassagne, Heriot-Watt University: "The locks within Seismic History 

Matching." 

13.30-13.45: Concluding remarks  

 



ENSEMBLE BASED MODELLING AND 4D IN WD

EXPERIENCE AND CHALLENGES

VEDAD HADZIAVDIC



ENSEMBLE METHODS AND 4D

• No experience with including 4D in ensemble-based history matching in 

Wintershall Dea (as far as I know)

• 4D experience from several operated and non-operated fields (including 

Brage)

• Ensemble based history matching on operated (Maria and Brage) and several 

non-operated fields

• My two cents:

• If I wanted to include 4D in ensemble-based HM, these are the questions I 

would pose. 

INTRODUCTION
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ENSEMBLE BASED METHODS AND 4D

o In Brage, on average, reserve predictions 

are is close to what is proven by the 

wells. On individual well level, proven 

reserves are often far away from P50 

predictions. 

o We are obviously performing uncertainty 

analysis – without apparent success. 

o Improvement potential

o Are key uncertainties included?

o Can we reduce prediction 

uncertainty?

PREDICTIONS

FOOTNOTE TOPIC, AUTHOR, DATE 

PAGE 3

• A-08B oil production (Statfjord) • A-18C oil production (Fensfjord)

• A-25A oil production (Statfjord) • A-23E oil production (Fensfjord)



ENSEMBLE BASED METHODS

UNCERTAINTIES

FOOTNOTE TOPIC, AUTHOR, DATE 
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• Leaving out uncertainties in input, leads to overconfidence in prediction. 



UNCERTAINTY AND PREDICTION IN SUBSURFACE

o Conditioning is one of the most important principles of 

statistical inference

o Data are conditioned on how they get sampled

o Posterior distributions are conditional on the data. 

o Model-based inference is conditional on the model 

o Every inference is conditional on something, whether 

we notice it or not. 

THE POWER OF CONDITIONING
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The power of statistical modelling comes from 

the ability to condition probability on 

different aspects. 

• Bayesian hierarchical models



UNCERTAINTY AND PREDICTION IN SUBSURFACE

UNCERTAINTY REDUCTION
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Structural model

Layer 
thickness 

uncertainty

Well position 
uncertainty 

Top surface 
uncertainty



OBJECTIVE
UNCERTAINTY AND PREDICTION IN SUBSURFACE
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Quantify 
uncertainty 

and include it 
in the model

Integrate data 
to reduce  

uncertainty

Predict 
outcomes and 

associated 
probabilities

Update model 
consistently 
and rapidly 

with new data



UNCERTAINTY AND PREDICTION IN SUBSURFACE

UNDERSTANDING RESULTS – RE AND STATISTICS

FOOTNOTE TOPIC, AUTHOR, DATE 
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“This is the right answer to the question of combining this 
model and the data. But it’s your responsibility to process 
the answer and make sense of it.” 
Richard McElreath



ENSEMBLE AND 4D

ANALYSIS
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Coverage scoreAggregate oil in placePrior - posterior

Percentiles

Histograms



ENSEMBLE METHODS AND 4D

• Brage:

• Brent ensemble model (finished, limited usage)

• Fensfjord model (under construction)

• Will be used to plan a campaign with several wells

• Campaign will be evaluated probabilistically (management approval challenge)

• Partnership is supportive but have little in-house competence on ensemble-based modelling

• Maria:

• Second (improved) model is under construction

• Partnership is supportive and competent (with some in-house modelling capabilities)

WHERE ARE WE?
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ENSEMBLE METHODS AND 4D

• Brage reservoirs and 4D feasibility:

• Fensfjord – limited

• Sognefjord - limited

• Statfjord - good

• Brent – very good

• 4D application in modelling/history matching:

• In none of the reservoirs were 4D maps used quantitively in modelling/history 

matching

• In Statfjord, a barrier was introduced by RE based on 4D observations

4D – BRAGE CASE
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ENSEMBLE METHODS AND 4D

• Fensfjord  - reservoir with largest remaining potential on Brage, difficult 

to identify drilling targets – business candidate for 4D? 

• Sognefjord – gas cap and oil leg. Compartmentalized. Where is the 

remaining oil leg? 

FENSFJORD/SOGNEFJORD – THE 
TROUBLESOME CHILDREN

FOOTNOTE TOPIC, AUTHOR, DATE 
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NH9204R00

Fensfjord

Sognefjord



ENSEMBLE METHODS AND 4D

4D INTERPRETATION STRATEGIES

4D inversion on Statfjord reservoir in 
Brage, CGG 2009 – Bayesian fluid 
classification

Simulator-to-seismic and 4D signal prediction on 
Statfjord, Brage

4D amplitude difference 2003-1992 on 
Fensfjord, Brage



ECNOUNTERED ISSUES
ENSEMBLE METHODS AND 4D

Fluid substitution

• Water flooding with remaining commercial saturation

• Water flooding with only residual oil

• Gas injection or gas-out-of-solution

10% water flooding 30% water flooding Gas-out-of-solution



ENSEMBLE METHODS AND 4D

ENCOUNTERED ISSUES
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Fensfjord Sognefjord

Monitor 1

Base

Hardening both with fluid and pressure depletion
Effects of pressure depletion may (by mistake) be 
interpreted as fluid change (e.g. Monitor1)

Velocity vs pressure



ENSEMBLE METHODS AND 4D

ENCOUNTERED ISSUES

FOOTNOTE TOPIC, AUTHOR, DATE 
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A-37 B

A-31 T2

A-40 B

A-23 DT4

31/4-3

Rel AI diff Time-shift

• Low correlation between 

Relative AI different maps 

(amplitude) and time-shift 

maps.



ENSEMBLE METHODS AND 4D

ENCOUNTERED ISSUES
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100ms gate 70ms gate 40ms gate

Choice of parameters for calculation



• Uncertainties:

• Pressure vs fluid effect on the amplitude

• Weighting of different attributes

• Parameter choices 

• Attribute choices

• Choice of time steps

SUMMARY

FOOTNOTE TOPIC, AUTHOR, DATE 
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THANK YOU



A workflow for 4D seismic history matching
demonstrated on the Norne field

Workshop on ensemble-based 4D seismic history matching

Rolf J. Lorentzen, NORCE / The National IOR Centre



Ensemble-based history matching



Ensemble-based history matching

• Provides uncertainty quantification for the reservoir model

> Improved decision making
> Better reservoir management

• Established for history matching of production data

> First application to reservoir models: Nævdal et. al, 2002, SPE 75235
> Methodology is applied world-wide, and is commercialized
> Norne field: Evensen & Eikrem, 2018; Chen & Oliver, 2014, SPE-164902-PA

• Use of 4D seismic data

> Problem with handling of large data sets (terabytes or petabytes)
> Quantification of measurement noise is difficult
> Norne field: Lorentzen et. al, 2019, Computational Geosciences
> https://github.com/rolfjl/Norne-Initial-Ensemble



Iterative ensemble smoother

mi+1
j = mi

j + S i
m(S i

d)T [(1 + λi)Cd + S i
d(S i

d)T ]−1(dobs
j − g(mi

j))

S i
m = (N − 1)−

1
2 [mi

1 − m̄i , . . . ,mi
N − m̄i ]

S i
d = (N − 1)−

1
2 [g(mi

1)− g(m̄i), . . . , g(mi
N)− g(m̄i)]

N : Ensemble size

More information: Luo et. al, 2015, SPE-176023-PA



Truncated Singular Value Decomposition (TSVD)

[(1 + λi)Cd + S i
d(S i

d)T ]−1 ∈ RNd×Nd

↓ TSVD

Sd ≈ UpWpV
T
p , p < N

Cd ≈ SεS
T
ε , Sε ∈ RNd×N

⇓

[(1 + λi)Cd + S i
d(S i

d)T ]−1 ≈ Ai · B i · C i

Ai ∈ RNd×p, B i ∈ Rp×p,C i ∈ Rp×Nd



Inclusion of 4D seismic data



Data compression (denoising)



Correlation-based adaptive localization

Tapering matrix Λcorr

More information: Luo et. al, 2018, SPE-185936-PA.



Generate initial
ensemble

Compute data
dj = G(mj),
j = 1 . . .N

Compute tapering
matrix Λcorr

Update parame-
ters m1, . . . ,mN

Compute
wavelet coeff.

co = DWT(do
seis)

Find indices for
leading coeff. (I)

Compute noise,
Cd , and scaling, s

Construct total
data vector

do = [s · do
prod, c

o ]

It
er

at
e



Norne field

• Oil & gas field in Norwegian sector

• 5 formations

• Hydrocarbon column approx. 135 m

• Original oil-in-place: 160 million Sm3

• Most of the sandstones are good reservoir rocks

• Wells: 9 injectors, 27 producers

• Production history: Nov. 1997–2006

• 4 seismic surveys (2001, 2003, 2004, 2006)

• 3× 9 km

• Grid size: 46 x 112 x 22

• Active cells: 44927



History matching the Norne field

• Initial ensemble generated using Gaussian random fields

• Updates porosity, permeability, net-to-gross, transmissibility multipliers, relative
permeability, initial oil-water contact

• Clay content defined as 1 minus ”net-to-gross”

• Data scaled based on initial data match

• Seismic data inverted for acoustic impedance at four points in time





Iteration crossplot



Initial Final



Top: real data. Middle: initial. Bottom: final.
Garn formation, Ip difference.



Initial Final



Initial Final



Initial Final



Mean gas saturation (top) and pressure (bottom)
at year 1997 (left) and 2006 (right).



Summary / Conclusions

• A workflow for history matching real production and seismic data is presented

• Methodology demonstrated on the Norne field

• Clay content and other petrophysical parameters updated

• Data match improved for both production and seismic data

• Updated static fields are geologically credible

• Used for reservoir management and uncertainty quantification

• Simulation of infill wells, EOR strategies and monitoring of EOR operations
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Measurement operator

The observation operator G comprises several steps summarized as:

1. running the reservoir simulator using mj to compute dynamic variables (pressure
and saturation)

2. running the petro-elastic model to compute the acoustic impedance, zp,j , at all
survey times

3. compute differences and average over formation layers to get ∆zp,j

4. applying the discrete wavelet transform to get wavelet coefficients

5. using the leading indices I to get d j
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Seismic data inversion and transformation

• Time shift correction:
Alfonzo et. al, 2017

• Linearized Bayesian approach:
Buland and Omre, 2003

• Time to depth conversion:
Provided Norne velocity model

• Upscaling:
Petrel software

• Difference and averaging:
∆z

o

p



Petro-elastic model

• Estimate mineral bulk and shear moduli:
[Ks ,Gs ]← Hashin− Shtrikman(Kquartz,Gquartz,Kclay,Gclay,Vclay)

• Dry rock bulk and shear moduli (empirical):
[Kdry,Gdry]← f (p, pini, φ)

• Fluid substitution:
[Ksat,Gsat]← Gassmann(Kdry,Gdry,Ks , so , sg , sw )

• P-wave velocity and rock density:
[vp, ρsat]← Mavko(Ksat,Gsat)
zp = vp × ρsat
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Formulating the history-matching problem with consistent error statistics

Geir Evensen

NORCE–Norwegian Research Center

digires. no

G. Evensen, Formulating the history matching problem with consistent error statistics, Comp. Geosci. in revision, 2020 Slide 1 / 30

digires.no


  

Issue 1

We sometimes force the model with some of the same data that we condition on!

Model: y = g(x,u)

Likelihood: f
(
d |y

)
= f

(
d | g(x,u)

)

Validity of the standard Bayes formula for the HM problem?

G. Evensen, Formulating the history matching problem with consistent error statistics, Comp. Geosci. in revision, 2020 Slide 2 / 30



  

Issue 2

We ignore errors in historical rates during ensemble simulation!

1. All model realizations are forced by the same rates.

2. Leads to underestimated prediction uncertainty.

3. Implications for the history matching?

It is possible to add stochastic rate errors in the schedule file.

G. Evensen, Formulating the history matching problem with consistent error statistics, Comp. Geosci. in revision, 2020 Slide 3 / 30



  

Issue 3

How to handle stochastic model errors in iterative smoothers?

1. Evensen (2019) discussed the problem of including model errors in iterative smoothers.

We can include and estimate stochastic rates as part of the history-matching process.

G. Evensen, Formulating the history matching problem with consistent error statistics, Comp. Geosci. in revision, 2020 Slide 4 / 30



  

Issue 4

We condition on observations assumed to have uncorrelated errors: Cdd = I.

Seismic data have errors with spatial correlations.

Rate data have highly correlated errors in time due to the use of allocation tables
Evensen and Eikrem (2018).

• Impact of neglecting these error correlations?

• Computational consequence of including these error correlations?

The subspace EnRML implementation (Evensen et al., 2019) allows for a full Cdd.

G. Evensen, Formulating the history matching problem with consistent error statistics, Comp. Geosci. in revision, 2020 Slide 5 / 30



  

I propose a consistent HM formulation

• Rederive Bayes’ formula for the HM problem.
• Include historical rates with stochastic errors during simulations.
• Update stochastic rates as part of the state vector.
• Include time-correlated rate data in a new subspace EnRML algorithm.

Leads to realistic posterior error statistics where we avoid “ensemble collapse.”

G. Evensen, Formulating the history matching problem with consistent error statistics, Comp. Geosci. in revision, 2020 Slide 6 / 30
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HM problem becomes

Model
y = g(x,u) = g(z).

Bayes
f(z |d) ∝ f(z)f(d | g(z)).

Ensemble formulation for approximate sampling of f(z |d) (normal priors)

J (zj) =
(
zj − zf

j

)T
C−1zz

(
zj − zf

j

)
+
(
g(zj)− dj

)T
C−1dd

(
g(zj)− dj

)
.

We need to estimate the rates used to force the model as part of the state vector.

G. Evensen, Formulating the history matching problem with consistent error statistics, Comp. Geosci. in revision, 2020 Slide 9 / 30



  

Subspace EnRML: (Raanes et al., 2019)

Original cost functions

J (zj) =
(
zj − zf

j

)T
C−1xx

(
zj − zf

j

)
+
(
g(zj)− dj

)T
C−1dd

(
g(zj)− dj

)
.

Solution is contained in the ensemble subspace, thus

za
j = zf

j +Awj ,

and,

J (wj) = wT
j wj +

(
g
(
zf
j +Awj

)
− dj

)T
C−1dd

(
g
(
zf
j +Awj

)
− dj

)
Reduces dimension of problem from state size to ensemble size.

wi+1
j = wi

j − γ∇J ij

G. Evensen, Formulating the history matching problem with consistent error statistics, Comp. Geosci. in revision, 2020 Slide 10 / 30



  

Iteration formula for W i simplifies by setting Cdd = I

Standard form (O(m3))

W i+1 = W i − γ
(
W i − ST

i

(
SiS

T
i +Cdd

)−1
Hi

)

From Woodbury, rewrite as

W i+1 = W i − γ
{
W i −

(
ST
i C
−1
dd Si + IN

)−1
ST
i C
−1
ddH

}
For Cdd = Im we have (O(mN2))

W i+1 = W i − γ
{
W i −

(
ST
i Si + IN

)−1
ST
i H

}
G. Evensen, Formulating the history matching problem with consistent error statistics, Comp. Geosci. in revision, 2020 Slide 11 / 30



  

Subspace inversion represents Cdd ≈ EET

• Algorithm by Evensen (2004) works directly with E.

(
SS

T
+ EE

T)
≈ SS

T
+ (SS

+
)EE

T
(SS

+
)
T

= UΣ
(
IN + Σ

+
U

T
EE

T
U(Σ

+
)
T)

Σ
T
U

T

= UΣ
(
IN + ZΛZ

T)
Σ

T
U

T

= UΣZ
(
IN + Λ

)
Z

T
Σ

T
U

T
.(

SST +EET
)−1 ≈ U(Σ+)TZ

(
IN +Λ

)−1(
U(Σ+)TZ

)T
Computational cost is O(mN2).

G. Evensen, Formulating the history matching problem with consistent error statistics, Comp. Geosci. in revision, 2020 Slide 12 / 30



  

Subspace EnRML algorithm: (Evensen et al., 2019)

1: Input: X0 ∈ <n×N (prior model ensemble)
2: Input: D ∈ <m×N (perturbed measurements)
3: Input: E0 ∈ <m̂×N (initial measurement perturbations)
4: W 0 = 0 W ∈ <N×N

5: Π =
(
I − 1

N 11T
)/√

N − 1 Π ∈ <N×N

6: E = DΠ E ∈ <m×N

7: i=0
8: repeat
9: Y i = g(Xi,Ei)Π Y ∈ <m×N

10: Ωi = I + W iΠ Ω ∈ <N×N

11: Si = Y iΩ
−1
i S ∈ <m×N

12: Hi = SiW i + D − g(Xi,Ei) H ∈ <m×N

13: W i+1 = W i − γ
(
W i − ST

i

(
SiS

T
i + EET

)−1Hi

)
14: T i =

(
I + W i+1

/√
N − 1

)
T ∈ <N×N

15: Xi+1 = XT i

16: Ei+1 = E0T i

17: i=i+1
18: until convergence

G. Evensen, Formulating the history matching problem with consistent error statistics, Comp. Geosci. in revision, 2020 Slide 13 / 30



  

EnKF analysis with uncorrelated measurement errors

grid index
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• Ensemble size N = 2000.

• Cdd is the solution with a full Cdd.

• EE is the solution when using the measurement perturbations E.

• Measurement error variance is 0.5.

G. Evensen, Formulating the history matching problem with consistent error statistics, Comp. Geosci. in revision, 2020 Slide 14 / 30



  

EnKF analysis with correlated measurement errors

grid index
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• Ensemble size N = 2000.
• Cdd is the solution with a full Cdd.
• EE is the solution when using the measurement perturbations E.
• ICA is inconsistent update erroneously assuming uncorrelated measurement errors.
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EnKF analysis with smooth measurement errors

grid index
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• Ensemble size N = 100, E ∈ <m×10N .

• Measurement error rd = 80 while ensemble rd = 40.

• Using E works perfectly.
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EnKF analysis with non-smooth measurement errors

grid index
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• Ensemble size N = 100, E ∈ <m×10N .

• Measurement error rd = 20 while ensemble rd = 40.

• Cannot represent scales in E shorter than rd = 40.
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EnKF analysis with many measurements

grid index
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• Ensemble size N = 100, E ∈ <m×10N .

• Number of measurements 200.

• Correlated errors.
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Approach

Simulate ensemble of correlated rate perturbations E0 and compute D = d+E0 .

Iterate:

1. Run model ensemble using an ensemble of schedule files with perturbed rates.

2. Use E0 in analysis inversion

W i+1 = W i − γ
(
W i − ST

i

(
SiS

T
i +E0E0

)−1(
SiW i +D − g(Xi,Ei)

))

3. Augment the rate perturbations to model state vector and update them(
Xi

Ei

)
=

(
X0

E0

)(
I +W i+1/

√
N − 1

)
.
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Cases
Noise Model Cdd Schedule Ei Update Ei

IES0 0 I no no
IESnd Red EET no no
IESR Red EET yes yes

1. IES0 is the standard case with diagonal Cdd = I and neglecting schedule forcing.
2. IESnd uses correlated errors through Cdd = EET, but neglects schedule forcing.
3. IESR uses Cdd = EET, updates Ei, and includes schedule forcing.
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Ensemble of cost functions converges very fast

Iteration number

C
o

s
t 

fu
n

c
ti

o
n

 v
a

lu
e

0 1 2 3 4 5 6 7 8 9
0

200000

400000

600000

800000

1E+06

1.2E+06

1.4E+06

IESR

Iteration number

C
o

s
t 

fu
n

c
ti

o
n

 v
a

lu
e

0 1 2 3 4 5 6 7 8 9
10

3

10
4

10
5

10
6

IESR

G. Evensen, Formulating the history matching problem with consistent error statistics, Comp. Geosci. in revision, 2020 Slide 21 / 30



  

Fault multiplier F6
F

a
u

lt
 m

u
lt

ip
li
e

r:
 F

6

0

0.2

0.4

0.6

0.8

1

Prior
IES0_10: F6

IESnd_10: F6
IESR_10: F6

F
a

u
lt

 m
u

lt
ip

li
e

r:
 F

6

10
3

10
2

10
1

10
0

G. Evensen, Formulating the history matching problem with consistent error statistics, Comp. Geosci. in revision, 2020 Slide 22 / 30



  

Months

O
P

2
 O

P
R

 (
m

^
3

/d
a

y
)

0 5 10 15 20 25 30 35
0

1000

2000

3000

4000

5000

6000

7000

8000

Months

O
P

2
 O

P
T

 (
m

^
3

)

0 5 10 15 20 25 30 35
0

1E+06

2E+06

3E+06

4E+06

5E+06

6E+06

IES0_0
IES0_10
history

Months

O
P

2
 G

P
R

 (
m

^
3

/d
a

y
)

0 5 10 15 20 25 30 35
0

500000

1E+06

1.5E+06

Months
O

P
2

 G
P

T
 (

m
^

3
)

0 5 10 15 20 25 30 35
0

2E+08

4E+08

6E+08

8E+08

1E+09
IES0_0
IES0_10
history

Months

O
P

2
 W

P
R

 (
m

^
3

/d
a

y
)

0 5 10 15 20 25 30 35
0

1000

2000

3000

4000

5000

6000

Months

O
P

2
 W

P
T

 (
m

^
3

)

0 5 10 15 20 25 30 35
0

500000

1E+06

1.5E+06

2E+06

2.5E+06

IES0_0
IES0_10
history

G. Evensen, Formulating the history matching problem with consistent error statistics, Comp. Geosci. in revision, 2020 Slide 23 / 30



  

Months

O
P

2
 O

P
R

 (
m

^
3

/d
a

y
)

0 5 10 15 20 25 30 35
0

1000

2000

3000

4000

5000

6000

7000

8000

Months

O
P

2
 O

P
T

 (
m

^
3

)

0 5 10 15 20 25 30 35
0

1E+06

2E+06

3E+06

4E+06

5E+06

6E+06

IESnd_0
IESnd_10
history

Months

O
P

2
 G

P
R

 (
m

^
3

/d
a

y
)

0 5 10 15 20 25 30 35
0

500000

1E+06

1.5E+06

Months
O

P
2

 G
P

T
 (

m
^

3
)

0 5 10 15 20 25 30 35
0

2E+08

4E+08

6E+08

8E+08

1E+09
IESnd_0
IESnd_10
history

Months

O
P

2
 W

P
R

 (
m

^
3

/d
a

y
)

0 5 10 15 20 25 30 35
0

1000

2000

3000

4000

5000

6000

Months

O
P

2
 W

P
T

 (
m

^
3

)

0 5 10 15 20 25 30 35
0

500000

1E+06

1.5E+06

2E+06

2.5E+06

IESnd_0
IESnd_10
history

G. Evensen, Formulating the history matching problem with consistent error statistics, Comp. Geosci. in revision, 2020 Slide 24 / 30



  

Months

O
P

2
 O

P
R

 (
m

^
3

/d
a

y
)

0 5 10 15 20 25 30 35
0

2000

4000

6000

8000

Months

O
P

2
 O

P
T

 (
m

^
3

)

0 5 10 15 20 25 30 35
0

1E+06

2E+06

3E+06

4E+06

5E+06

6E+06

IESR_0
IESR_10
history

Months

W
O

P
R

H
:O

P
_

2

0 5 10 15 20 25 30 35
0

1000

2000

3000

4000

5000

6000

7000

8000

IESR_0

IESR_10
History

Months

O
P

2
 G

P
R

 (
m

^
3

/d
a

y
)

0 5 10 15 20 25 30 35
0

500000

1E+06

1.5E+06

Months
O

P
2

 G
P

T
 (

m
^

3
)

0 5 10 15 20 25 30 35
0

2E+08

4E+08

6E+08

8E+08

1E+09
IESR_0
IESR_10
history

Months

W
G

P
R

H
:O

P
_

2

0 5 10 15 20 25 30 35
0

200000

400000

600000

800000

1E+06

1.2E+06

1.4E+06

1.6E+06

IESR_0

IESR_10
History

Months

O
P

2
 W

P
R

 (
m

^
3

/d
a

y
)

0 5 10 15 20 25 30 35
0

1000

2000

3000

4000

5000

6000

Months

O
P

2
 W

P
T

 (
m

^
3

)

0 5 10 15 20 25 30 35
0

500000

1E+06

1.5E+06

2E+06

2.5E+06

IESR_0
IESR_10
history

Months

W
W

P
R

H
:O

P
_

2

0 5 10 15 20 25 30 35
0

1000

2000

IESR_0

IESR_10
History

G. Evensen, Formulating the history matching problem with consistent error statistics, Comp. Geosci. in revision, 2020 Slide 25 / 30



  

Months

O
P

4
 O

P
R

 (
m

^
3

/d
a

y
)

0 5 10 15 20 25 30 35
0

2000

4000

6000

8000

Months

O
P

4
 O

P
T

 (
m

^
3

)

0 5 10 15 20 25 30 35
0

500000

1E+06

1.5E+06

2E+06

2.5E+06

3E+06

3.5E+06

IES0_0
IES0_10
history

Months

O
P

4
 G

P
R

 (
m

^
3

/d
a

y
)

0 5 10 15 20 25 30 35
0

500000

1E+06

1.5E+06

Months
O

P
4

 G
P

T
 (

m
^

3
)

0 5 10 15 20 25 30 35
0

1E+08

2E+08

3E+08

4E+08

5E+08

6E+08

IES0_0
IES0_10
history

Months

O
P

4
 W

P
R

 (
m

^
3

/d
a

y
)

0 5 10 15 20 25 30 35
0

1000

2000

3000

4000

5000

Months

O
P

4
 W

P
T

 (
m

^
3

)

0 5 10 15 20 25 30 35
0

500000

1E+06

1.5E+06

2E+06

IES0_0
IES0_10
history

G. Evensen, Formulating the history matching problem with consistent error statistics, Comp. Geosci. in revision, 2020 Slide 26 / 30



  

Months

O
P

4
 O

P
R

 (
m

^
3

/d
a

y
)

0 5 10 15 20 25 30 35
0

2000

4000

6000

8000

Months

O
P

4
 O

P
T

 (
m

^
3

)

0 5 10 15 20 25 30 35
0

500000

1E+06

1.5E+06

2E+06

2.5E+06

3E+06

3.5E+06

IESnd_0
IESnd_10
history

Months

O
P

4
 G

P
R

 (
m

^
3

/d
a

y
)

0 5 10 15 20 25 30 35
0

500000

1E+06

1.5E+06

Months
O

P
4

 G
P

T
 (

m
^

3
)

0 5 10 15 20 25 30 35
0

1E+08

2E+08

3E+08

4E+08

5E+08

6E+08

IESnd_0
IESnd_10
history

Months

O
P

4
 W

P
R

 (
m

^
3

/d
a

y
)

0 5 10 15 20 25 30 35
0

1000

2000

3000

4000

5000

Months

O
P

4
 W

P
T

 (
m

^
3

)

0 5 10 15 20 25 30 35
0

500000

1E+06

1.5E+06

2E+06

IESnd_0
IESnd_10
history

G. Evensen, Formulating the history matching problem with consistent error statistics, Comp. Geosci. in revision, 2020 Slide 27 / 30



  

Months

O
P

4
 O

P
R

 (
m

^
3

/d
a

y
)

0 5 10 15 20 25 30 35
0

2000

4000

6000

8000

Months

O
P

4
 O

P
T

 (
m

^
3

)

0 5 10 15 20 25 30 35
0

500000

1E+06

1.5E+06

2E+06

2.5E+06

3E+06

3.5E+06

IESR_0
IESR_10
history

Months

W
O

P
R

H
:O

P
_

4

0 5 10 15 20 25 30 35
0

2000

4000

6000

8000

IESR_0

IESR_10
History

Months

O
P

4
 G

P
R

 (
m

^
3

/d
a

y
)

0 5 10 15 20 25 30 35
0

500000

1E+06

1.5E+06

Months
O

P
4

 G
P

T
 (

m
^

3
)

0 5 10 15 20 25 30 35
0

1E+08

2E+08

3E+08

4E+08

5E+08

6E+08

IESR_0
IESR_10
history

Months

W
G

P
R

H
:O

P
_

4

0 5 10 15 20 25 30 35
0

500000

1E+06

1.5E+06

IESR_0

IESR_10
History

Months

O
P

4
 W

P
R

 (
m

^
3

/d
a

y
)

0 5 10 15 20 25 30 35
0

1000

2000

3000

4000

5000

Months

O
P

4
 W

P
T

 (
m

^
3

)

0 5 10 15 20 25 30 35
0

500000

1E+06

1.5E+06

2E+06

IESR_0
IESR_10
history

Months

W
W

P
R

H
:O

P
_

4

0 5 10 15 20 25 30 35
0

2000

4000

IESR_0

IESR_10
History

G. Evensen, Formulating the history matching problem with consistent error statistics, Comp. Geosci. in revision, 2020 Slide 28 / 30



  

Summary

• Discussed the formulation of the HM problem.
• Studied impact of correlated measurement errors on HM.
• Included historical rates with stochastic errors in simulations.
• Consistently updated stochastic rate errors.
• Used the new subspace EnRML algorithm.

ww�
Consistent formulation of HM problem with more realistic error statistics.
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Motivation

• Dynamic model predictions (fluid flow simulations) are 
based on a static reservoir model.

• Static reservoir models are built using measured data at the 
well location and geophysical (seismic) measurements.

• Well data are sparse and geophysical data have low 
resolution, hence static reservoir models and dynamic 
model predictions are uncertain. 

– 2



Content

– 3

• Introduction to reservoir geophysics

• Ensemble-based methods:
• Seismic inversion
• Seismic history matching

• CO2 sequestration



Reservoir geophysics

– 4

• In reservoir geophysics we aim to model rock 
properties: porosity, lithology, and fluid saturations.
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Inverse problem

Seismic inversion - Data: seismic amplitudes/traveltimes
Model parameters: elastic attributes

Petrophysical inversion - Data: elastic attributes 
Model parameters: rock/fluid properties

Seismic data Porosity

SummaryReservoir geophysics
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Reservoir geophysics

• There are various approaches for quantitative 
estimation of reservoir properties from seismic 
data:

Ø Deterministic methods
Ø Probabilistic methods

• Spatial variations in reservoir properties and inter-
dependence between different properties are 
complex to model.

• The probabilistic framework is ideally suited to 
model the uncertainty.
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Bayesian inversion

• Goal:     - Estimate reservoir properties R
from seismic data S

- Evaluate the model uncertainty
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321 qqq
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SSS

swc
P
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S

R
SR

Porosity
Clay content
Water saturation

Partial-stack 
seismic data

We estimate the posterior probability:



Bayesian inversion

Elastic properties

Seismic data

Rock properties

Bayesian seismic inversion
(e.g., Buland and Omre, 2003)

Bayesian petrophysical inversion
(e.g, Doyen, 2007)

• Workflow:
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Bayesian inversion

• Analytical vs numerical approaches
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Bayesian geophysical inversion

• Seismic inversion

• Log-Gaussian prior distribution – Linearized seismic model
Buland and Omre, Geophysics, 2003 

• Petrophysical inversion 

• Gaussian mixture prior distribution - Linearized rock physics 
model

Grana and Della Rossa, Geophysics, 2010

• Gaussian mixture prior distribution + Markov chain (facies) -
Linearized rock physics model

Grana, Fjeldstad, and Omre, Math. Geo., 2017 
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Bayesian inversion

Well log
Estimated log (Posterior mean)

95% confidence interval (--)

• Linearized forward model
• Real data example 

Lang and Grana, 2017 
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Geostatistical methods

• Multiple reservoir model realizations
• Uncertainty quantification 



– 13

Geostatistical methods

• Stochastic optimization method (ES-MDA)
• Seismic and rock physics non-linear model

Liu and Grana, 2018 
Well log data

Estimated model (Posterior mean)
Stochastic realizations
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Example 1: Goliat – Barents Sea

Isoprobability surface of 70% probability of hydrocarbon sand
Probability

Grana and Della Rossa, 2010
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Example 2: Norne – North Sea (4D)



Content

– 16

• Introduction to reservoir geophysics

• Ensemble-based methods:
• Seismic inversion
• Seismic history matching

• CO2 sequestration



Ensemble-based methods

– 17

𝑑 = 𝒢 𝑚 + 𝑒

• 𝑚 ∈ ℳ model parameter vector / parameter function

• 𝒢:ℳ → 𝒟 forward response operator (ℳ and 𝒟 are separable 

Hilbert spaces)

• 𝑑 output / observations

• 𝑒 measurement errors usually assumed to be Gaussian 𝒩(0, 𝛴)

• Evaluation of 𝒢 often expensive

Find the unknown model parameters 𝑚 ∈ ℳ from noisy observations 𝑑 ∈ 𝒟



Ensemble-based methods

– 18

Challenges for application to seismic inversion

Non-linear forward 

models

• Exact Zoeppritz

equations

• Rock physics models

• Fluid flow 

simulation

Uncertainty 

quantification

• Bandlimited 

geophysical data

• Noisy measurement

• Imperfect models

High-dimensional 

data

• e.g. 3D seismic data

• Computationally 

prohibitive

• Ensemble collapse



Ensemble-based methods

– 19

(Faragher, 2012)
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Bayesian formulation



Ensemble-based methods

– 20

𝒎)*+ = argmin
!

𝑂 𝒎 = 𝝁𝒎|𝒅 = 𝝁𝒎 +𝑲 𝒅 − 𝑮𝝁𝒎

𝑲 = 𝑪𝒎𝑮% 𝑮𝑪𝒎𝑮% + 𝑪𝒅 &'

𝑪𝒎|𝒅 = 𝑪𝒎 −𝑲𝑮𝑪𝒎

Maximum a 
posterior

(Faragher, 2012)

Bayesian formulation



Ensemble-based methods
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Ensemble Smoother with Multiple Data Assimilation (ES-MDA)

𝒎,
- = 𝒎,

. + 9𝑲 9𝒅, − 𝒅,
.
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01'
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. − =𝒅.)% = 𝑮𝑪𝒎𝑮%

• Simultaneously assimilate all the observations available

• ES faster and easier to implement than EnKF

• To guarantee the convergence, the model updating is performed multiple times

• EnKF and ES are effectively the same as updating each ensemble member by doing one 

iteration of the Gauss-Newton method using the same average sensitivity matrix for all 

ensemble members.



Ensemble-based seismic inversion: example

– 22

Elastic 
attributes

Petrophysical 
properties

Pre-stack seismic 
response

Measured dataset at the well location



Ensemble-based seismic inversion: example
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Well log

Prior models

Prior mean

One realization

Prior Models



Ensemble-based seismic inversion: example
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Posterior Models

Well log Post. models Post. mean

Posterior  petrophysical models Posterior  elastic models



Ensemble-based seismic inversion: example
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Case history: Norne field

Near stack (10o)

Mid stack (23o)

Far stack (35o)



Ensemble-based seismic inversion: example
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Case history: Norne field

Posterior mean of petrophysical models Posterior mean of elastic models



Dimensionality reduction

– 27

• The number of observations are much larger than the number of 

simulated models

• The forward modeling is often a highly time-consuming procedures

•How to avoid ensemble collapse due to the big size of seismic data?

•Covariance localization

•Data order reduction

• SVD

•DEIM

•DCAE



Seismic history matching

– 28

Reservoir Characterization History Matching
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Seismic history matching

• Goal: Estimation of porosity and permeability
• Method: Ensemble Smoother MDA

True model Production data
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Seismic history matching
Results - Production data only

Reference Model Posterior Mean Posterior Variance Predicted Production Data

Only captures the trend near the well locations 

Liu and Grana, 2018b 
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Seismic history matching
Results - Production + Seismic data

Reference Model Posterior Mean Posterior Variance Predicted Production Data

Accurately captures the spatial trend of the reservoir model

Liu and Grana, 2018b 



Content

– 32

• Introduction to reservoir geophysics

• Ensemble-based methods:
• Seismic inversion
• Seismic history matching

• CO2 sequestration



Johansen formation
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• Deep saline aquifer located under the Troll field
• Potential CO2 storage unit

(Eigestad et al., 2009; Bergmo et al., 2011)



Geophysical history matching
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• Geophysical history matching:
• Seismic and CSEM surveys
• Injection and monitoring well data 
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Geophysical history matching
4D seismic data 4D CSEM data
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Geophysical history matching
Porosity prediction (pre-injection)



– 37

Geophysical history matching
CO2 saturation (year 110)
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Geophysical history matching

• CO2 saturation

Year 10

Year 60

Year 110
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Geophysical history matching
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Conclusions

• Surface geophysical data provide useful information 
to constrain the spatial distribution of reservoir 
properties;

• Data are dense but resolution is limited and signal 
to noise ratio low, hence uncertainty quantification 
is required;

• Ensemble-based methods provide a mathematical 
tool for model optimization and uncertainty 
quantification.
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Outline

• Background and motivation

• Proposed framework and methodology

• Numerical examples

• Conclusions and future works

2



Repeated seismic (4D) surveys provide information about:

o Production related changes (changes in pressure, saturations)

o Compaction related changes (change in porosity)

This work addresses estimation of reservoir parameters (Saturations (SWAT, SGAS), Pressure

(PRESS) and Porosity (PORE)) from seismic data

o an ensemble-based methodology is implemented and tested

o uncertainty quantification of the estimated parameters

Motivation of the work

(Courtesy http://csegrecorder.com/articles/view/what-comes-up-must-

have-gone-down)

(Courtesy http://www.uis.no/getfile.php/IOR-

senter/21%20Martin%20Landr%C3%B8%20Komplett%20IOR-NORWAY-2015-ML_a.pdf)

3



Review of methods
• Ensemble-based method for reservoir characterization

➢ A new ensemble-based data-assimilation method, Ensemble Kalman Filter (EnKF), was published for use in oceanography and

meteorology (Evensen, 1994)

➢ The method was introduced in reservoir community by Næavdal and Lorentzen (2000). The method is now a well-established history

matching tool (Næavdal et., 2005; Aanonsen et al., 2009, Chen and Oliver, 2013)

➢ Investigation by integrating seismic data (Skjervheim et al. , 2007; Trani et al., 2012; Luo et al., 2016; Lorentzen et al. , 2019)

• Recent applications of the method in seismic inversions:

➢ Estimation of pressure-saturation changes using time-lapse acoustic impedance data (∆Ip) (Emerick, 2014)

➢ Simultaneous inversion of pressure-saturation and porosity fields from Ip data (Bhakta et al., 2017a)

➢ Inversions of pressure-saturation and porosity fields using AVA data (Bhakta et al., 2017b)

➢ Extend the method for compacting reservoir scenario (Bhakta et al., 2018)

➢ Implementation of the method in real field case (Liu and Grana, 2018)

➢ Investigation of the method using both PP- and PS- seismic data (Liu and Grana, 2018)

• Here, we demonstrate the workflow for compacting reservoir scenario :

✓ To estimate changes in both dynamic and static parameters. Decoupling of production and compaction related changes.

✓ Time-lapse Ip (∆Ip) data is used for the inversion
4



Background and motivation

Ensemble-based history matching for hydrocarbon reservoir characterization

History matching (a.k.a. data assimilation)

for the update of reservoir models

Reservoir models Observations (real and simulated)

✓ Ensemble-based history matching methods 

provide a means of uncertainty 

quantification (UQ) for the estimation 

results

5



Seismic data

• Dynamic parameters 

(Saturation and 

pressure)

• Static parameter

(Porosity) Seismic data at different “levels”*

• Amplitude versus angle 

(AVA); 

• or, Raw seismic data

• Impedances (𝐼𝑝, 𝐼𝑠); 

• or, Velocities (𝑣𝑝, 𝑣𝑠) and 

density

Feng, T., J. Skjervheim, and G. Evensen. "Quantitative use of different seismic attributes in reservoir modeling." ECMOR XIII-13th European Conference on 

the Mathematics of Oil Recovery. 2012.

Background and motivation

How to obtain from 

seismic data

6



AVA data  
(Raw seismic)

Impedance 
(𝑣𝑝, 𝑣𝑠, 𝜌) 

Relation between reservoir petro-physical parameters and seismic data at different levels
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Dynamic 
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Static 
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(Ф, µ) 

Background and motivation

7
* For compacting reservoir, porosity also changes over the production life of the field. 



AVA data  
(Raw seismic)

Impedance 
(𝑣𝑝, 𝑣𝑠, 𝜌) 

Relation between reservoir petro-physical parameters and seismic data at different levels
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Rock physics 

model

AVA (full waveform)

simulation
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Dynamic 
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Static 
parameters 

(Ф, µ) 

Background and motivation

Our focus in this talk is to do 

inversion using Ip data 
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Proposed framework

9



Rock physics model for compacting reservoir*
• Estimate water saturated bulk modulus for varying porosity:

𝐾𝑤𝑒𝑡 ← modified Voigt model(∅, ∅𝑐, ℎ𝑓)

• Calculate dry moduli from 𝐾𝑤𝑒𝑡:

𝐾𝑑𝑟𝑦1 , 𝐺𝑑𝑟𝑦1 ← Gassmann and rock Poisson’s ratio (𝐾𝑤𝑒𝑡, 𝑃𝑟)

• Inclusion of pressure effects:

𝐾𝑑𝑟𝑦, 𝐺𝑑𝑟𝑦 ← Hertz−Mindlin and lower Hashin−Shtrikman(𝐾𝑑𝑟𝑦1 , 𝐺𝑑𝑟𝑦1 , ∅, ∅𝑐)

• Fluid substitution:

𝐾𝑠𝑎𝑡, 𝐺𝑠𝑎𝑡 , 𝜌𝑠𝑎𝑡 ← Gassmann(𝐾𝑑𝑟𝑦, 𝐺𝑑𝑟𝑦, ∅, 𝑆𝑤𝑎𝑡𝑒𝑟 , 𝑆𝑜𝑖𝑙 , 𝑆𝑔𝑎𝑠)

• P-wave velocity and acoustic impedance:

𝑉𝑝← (𝐾𝑠𝑎𝑡, 𝐺𝑠𝑎𝑡, 𝜌𝑠𝑎𝑡)

𝐼𝑝 ← 𝑉𝑝𝜌𝑠𝑎𝑡

* Das, Agnibha, et al. "Dynamic rock physics modeling for compacting chalk reservoirs." SEG Technical Program Expanded Abstracts 2013. Society of 

Exploration Geophysicists, 2013. 2792-2796. 10



Methodology [iterative Ensemble Smoother (iES)]

The posterior realizations can be expressed as (RLM-MAC algorithm*): 

𝑚𝑗
𝑖+1 = 𝑚𝑗

𝑖 + 𝐾𝑖∆𝑦𝑗

ഥ𝑚𝑖 =
1

𝑁𝑒


𝑗=1

𝑁𝑒

𝑚𝑗
𝑖

where, 𝑚𝑗
𝑖 =

∆∅

∆𝑃
∆𝑆𝑤
∆𝑆𝑔

∆𝑦𝑗 = (𝑑𝑜𝑏𝑠 − 𝑔(𝑚𝑗
𝑖))

𝐾𝑖 ≡ 𝑆𝑚
𝑖 𝑆𝑑

𝑖 𝑇
𝑆𝑑
𝑖 𝑆𝑑

𝑖 𝑇
+ 𝛾𝑖𝐶𝑑

−1

(Kalman-type gain matrix)

𝑆𝑚
𝑖 =

1

𝑁𝑒 −1
𝑚1

𝑖 − ഥ𝑚𝑖 , 𝑚2
𝑖 − ഥ𝑚𝑖 , …… . . ,𝑚𝑁𝑒

𝑖 − ഥ𝑚𝑖 (Model square root matrix)

𝑆𝑑
𝑖 =

1

𝑁𝑒 −1
𝑔(𝑚1

𝑖 ) − 𝑔( ഥ𝑚𝑖), 𝑔(𝑚2
𝑖 ) − 𝑔( ഥ𝑚𝑖), … , 𝑔(𝑚𝑁𝑒

𝑖 ) − 𝑔( ഥ𝑚𝑖) (Square root matrix  of simulated data)

*Luo, X., et al. (2015). "Iterative ensemble smoother as an approximate solution to a regularized minimum-average-cost 

problem: theory and applications." SPE Journal, 20, 962 - 982, paper SPE-176023-PA.

𝑖 =  iteration step number

𝑗 =  ensemble member number

11



Numerical example: 3D Sector model of a compacting reservoir

Experimental settings

Model size Full model dimension: 128×155×22 

Part of the model is used: 36×45×22, with 31313 out of 35640 being 

active cells

Parameters to estimate ∆PORE, ∆PRESSURE, ∆SWAT and ∆SAG. 

Total number is 4×31313 = 125,252

Gridblock size Irregular. Average ∆X ≈ 120m, ∆Y ≈ 120m, and average ∆Z ≈ 20m

Reservoir simulator PSim (ConocoPhillips) 

Number of wells 10 injectors and 30 producers 

Production period 14600 days

Seismic data Time-lapse acoustic impedance (∆Ip) data at each grid block at 

survey times. 

Noise to the measurements Gaussian noise is added to ∆Ip (Standard deviation (𝜎) = 25 000 

𝐾𝑔 𝑚−2 𝑠−1)

Inversion method iES (RLM-MAC) with an ensemble of 100 reservoir models*

Localization Correlation based localization*

Number of ensemble members 100

*Luo, X., et al. (2015). "Iterative ensemble smoother as an approximate solution to a regularized minimum-average-cost problem: theory and applications." SPE Journal, 20, 962 - 982, 

paper SPE-176023-PA.

*Luo X., Bhakta T. and Nævdal, G. Data Driven Adaptive Localization For Ensemble-Based History Matching Methods, SPE Bergen One Day Seminar, 5 April 2017. SPE-185936-MS 12



Numerical example: 3D Sector model
Results without localizations

Seismic data mismatch

RMSE  of model parameters

13



Ensemble collapse: a practical challenge for ensemble-based inversion

Estimates

Truth

Desired scenario Reality: ensemble collapse (small 

ensemble size + large dataset)

❑ Ensemble collapse: a phenomenon in which estimated reservoir

models become almost identical with very few varieties

Impact of ensemble collapse

❑ Poor UQ performance

❑ Stop assimilating observations into

reservoir models 

Methodology

14



Methodology

Effect of localization on an ensemble-based inversion algorithm

𝑚𝑖
𝑢 = 𝑚𝑖

𝑓
+ σ𝑗𝐾𝑖𝑗 ∆𝑦𝑗 (original update formula)

𝑚𝑖
𝑢 = 𝑚𝑖

𝑓
+ σ𝑗 𝜉𝑖𝑗𝐾𝑖𝑗 ∆𝑦𝑗 (update formula with localization)

❑ The tapering coefficient 𝜉𝑖𝑗 ∈ [0,1] depends on the specific localization method

❑ For instance, in a distance-based localization method, 𝜉𝑖𝑗 depends on the distance between 

the physical locations of the 𝑗th observation element and the 𝑖th model variable 

➢ We use correlation-based localization method that

✓ does not rely on physical locations of model variables and/or observations

✓ works for both local and non-local observations

15



❑ Correlation-based localization*

*Luo X., Bhakta T. and Nævdal, G. Data Driven Adaptive Localization For Ensemble-Based History Matching Methods, SPE Bergen One Day Seminar, 5 April 2017. SPE-185936-MS  

𝑚𝑖
𝑢 = 𝑚𝑖

𝑓
+ σ𝑗 𝜉𝑖𝑗𝐾𝑖𝑗 ∆𝑦𝑗 (update formula with localization)

Thresholding: 𝜉𝑖𝑗 = 𝐼 𝜌𝑖𝑗
𝑁 ≥ 𝜆𝑗

𝑁 ≡ ൝
1, 𝑖𝑓 𝜌𝑖𝑗

𝑁 ≥ 𝜆𝑗
𝑁

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
independent of physical locations 

of model variables and/or observations

✓ Data selection based on correlations between model variables and observations

✓ Here, tapering fields for 1st element of the data are shown 

Methodology

Tapering mask 

PORE field (Layer 10)

Tapering mask 

PRESSURE field (Layer 10)

Tapering mask 

SWAT field (Layer 10)
Tapering mask 

SGAS field (Layer 10)

16



Numerical example: 3D Sector model
Results with localizations

Seismic data mismatch

No localization
Localization 

(Threshold = 0.10)
Localization 

(Threshold = 0.20)

Localization 

(Threshold = 0.35)

17



RMSE  of model parameters

Numerical example: 3D Sector model

Results with localizations (Threshold = 0.20)

Seismic data mismatch

18
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Numerical example: 3D Sector model
Results with localizations (Threshold = 0.20) – for Layer 10  
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Numerical example: 3D Sector model
Results with localizations (Threshold = 0.20) – for Layer 10  
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Numerical example: 3D Sector model
Results with localizations (Threshold = 0.20) – for Layer 10  
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Conclusions and future works

Estimations of both static and dynamic parameters 
simultaneously 

Uncertainty quantification of the estimated 
parameters

Applicability to various types of seismic data 
(coming from different levels)

Advantages in using ensemble-based inversion method

22



Conclusion and future works

Field case studies

Various types of seismic 
data/ attributes 

Possible future investigations

23
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4D seismic history matching in DELFI 
Jarle Haukås, Schlumberger Norway Technology Centre, Stavanger

Workshop on ensemble-based 4D seismic history matching, October 14-15, 2020



Outline

• Introduction

• Ensemble based 4D seismic history matching – experience and lessons learned

• Data, models and compute resources at your fingertips – new ways of working?

• Summary and outlook
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Journey from specialist to generalist

3

We want to 

simulate the 

right physics!

2003-2006

PhD comp. res. sim

We are supposed 

to use seismic to 

build and update 

reservoir models!

2015

Res Mgt & IOR Prog Mgr

We should really 

integrate all sorts of 

data and address 

uncertainty!

2006

SSR

We should break down 

domain silos and leverage 

machine learning in a 

collaborative environment 

for domain experts and 

data scientists

2020 

SSR+SNTC=True

Python

Petrel

DELFI

Science



Motivation

4

«How is the new time-lapse seismic working out?»

«I think the geophysicists are happy about it»

«I pushed the data processing vendor to deliver 

time-lapse data 10 days after the last shot. I 

handed the interpretations over to the reservoir 

engineering team, eager to see the impact on the 

reservoir model. Two weeks later I came back and 

asked how it was going. They replied that they 

hadn’t had time to look at it yet.»

«Based on time-lapse seismic data, I did a 

quick sketch of what could potentially be the 

water front. Some time later, I discovered that 

my sketch had been copied into a series of 

PowerPoint presentations as a picture of the 

actual water front.»

«The acquisition and processing of time-

lapse seismic data has been automated 

and is very efficient, but it takes up to 6 

months to bring the results into the 

reservoir model.»

Poor cross-domain 
integration

Lack of 
automation and 

efficiency

Uncertainty 
not captured / 
communicated



Contributing to the big picture

5

Exploration and field development decisions

Aquire, interpret, model, predict, compare, update, optimize, revisit, collaborate, share, understand

UncertaintyInterpretation

Data Models

Optimization

Predictions



Ensemble based history matching

6

Models
Parameters

Models
Models

Models

Mismatch
Adjusted 

parameters Models
Models

Models
Models

...
Mathematics/statistics, e.g. 

ensemble smoother

Where can domain experts influence the system?

• Impose geological realism
• Flag and help quantify interpretation uncertainties
• Flag and help quantify modeling uncertainties
• Define uncertainty consistently for all domains
• Define appropriate mismatch function for all domains

Which new tools are needed?

• Parametrized interpretation and modeling
• Horizons, faults, properties, 3D models
• Fluid and pressure fronts (thresholds)

• Extract relationships (e.g. constraints) from data
• End-to-end sensitivity checks
• Composability and customization



Workspace for Integrated Geoscience and RE Workflows in DELFI

7

O
S

D
U

 / 
D

M
S

Seismic data

(3D, 4D, attributes)

Well data 

(e.g. logs, prod.)

Simulation decks and 

results (ECL, IX)

Rock physics models

Derived data 

(e.g. horizons, faults)

Libraries

Wrappers

Read

Write

Sync

Scalable compute resources

EESy / ARGO workflows

Data and model interaction, 

visualization, collaboration

Data access

Openness & agility Orchestration

Model access

Libraries

Wrappers

Read

Write

Sync

Environment

Workspace

Customized libraries

Domain workflows



Cloud access to data, models, engines

8

Seismic store
Wellbore store

Simulation store

Engine eco-system (EESy)

Example: On-demand 

reservoir simulation

Grid store



Challenges adressed

• Break down domain silos

• Utilize data across all domains

• Scalable compute and storage

• Composable workflows – combine own and 3rd party components

• Customization, e.g. field specific rock physics models

• Bring research prototypes faster to market

• Collaborate and share

• Connect to machine learning solutions – discover relationships in data and models

9



Data, models and engines at your fingertips – new ways of working?

10

RE workflow Eclipse

Input data for simulation:

- Grid geometry

- Static properties (PORO, NTG, PERM)

- Faults and fault transmissibilities

- Fluid and rock properties (rhof, kr, Pc)

- Equilibration (Pinit, OWC)

- Wells

- Development strategy (inj, prod, hist/pred)

Production forecast

(history matching)

Example developed together with geologist with no programming background

Goal: Geologically consistent 
parametrization

Both deterministic and machine learning solutions included (EESy engines)

End-to-end sensitivity checkAutomated orchestration



4D seismic history matching – integrated approach

1. Locate significant and interpretable 4D seismic anomalies – connected to well event

2. Swept volume tracking, pressure fronts, fluid fronts – observed versus simulated 

3. Quantify mismatch – overall or well-by-well basis

11



Well events that could / should have an impact on 4D

12

• Start-up
• Shut-down
• Pressure increase
• Pressure drop
• Gas breakthrough
• Water breakthrough

Read directly from cloud storage



Swept volume at time of water breakthrough

13

Different for different realizations!

Petrel view (.grdecl import)



Synthetic 4D difference at water breakthrough

14

SWAT difference Cell-wise time strain 

(dvp/vp – dz/z, no convolution)

Time strain by NRM (zgy)

Amp. diff after matching (zgy)

Time strain by NRM (in grid)

Amp. diff after matching (in grid)

Notice loss of resolution / accuracy – important for comparison with real 4D data



Observed 4D seismic anomaly at water breakthrough
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Simulation grid resolutionSeismic grid resolution



Interpretation / extraction uncertainty – threshold sensitivity

16



4D seismic model vs data mismatch

17

Simulated 4D attr «Observed» 4D attr Simulated 4D attr «Observed» 4D attr

Time strain Amplitude difference

Footprint

Threshold

Original

Footprint

Threshold

Original



Scripts put in sequence – consistent tracking of events

18



Composability and extensibility – working together to fill the gaps

19

Auto-quantify mismatch

4D seismic (RE vs rock physics), production data

Auto-characterize well events 

simulated and observed data
Auto-extract swept volumes

from simulation results & via synthetic 4D seismic

Auto-extract seismic anomalies 

(geobodies from 3D & 4D seismic)

Auto-generate model update / realization

(update OWC, 3D properties from seismic)

Auto-generate customized displays

Well-centric, data & model coviz

Auto-generate synthetic seismic & logs 

from simulation input and results (3D, 4D by non-rigid matching)



Summary and outlook

20

«The future is open»
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