

IORSim Geochem Module

Why do we need geochemistry?

- We know fluid chemistry affects flow properties on core scale (~10 cm)
 - 1. Compaction and wettability in chalk
 - 2. Water diverging
 - 3. Low salinity effects
- How to translate core scale knowledge/processes to field scale?
 - Implementation of IOR processes
 - Interpretation of field data

Effect of sulphate on oil production

R. Ahsan, M. V. Madland , F. Bratteli, A. Hiorth "A STUDY OF SULPHATE IONS - EFFECTS ON AGEING AND IMBIBITION CAPILLARY PRESSURE CURVE" – SCA, **34** (2012)

SO4 affects Yield – hydrostatic test

Liege chalk, Porosity = 40.3 – 41.8%

The National IOR Centre of Norway

Megawati, M., Hiorth, A., Madland, M.V., (2012), The impact of surface charge on the mechanical behaviour of highporosity chalk, Rock Mechanics and Rock Engineering-Springer

Synthethic model (IORCoreSim results)

IFE S

Two cases: 1. 0.1wt% CO_2 in oil 2. 10⁻⁴wt% CO_2 in oil

After 600 days switch from seawater to LowSal

(900days) pH, salinity and surface potential - different speeds IOR Centre of Norway

IORSim Workflow:

A Note on the Input files

The Nation:

- IORSim flow models developed at IFE
- Geochem and Silicate models at NORCE

- Input files have been developed and extended as needed
- Hence, there are some non-logical issues that have to be corrected
 - Some we know of ... but we would like feed back from you

CASE.trcinp

IFE

CASE.geocheminp	22 #iexchange 23 #X 0.01 24 #/ end 25 #method 0 cot supfor
<pre>1 internal 2 solution 0 pH determined by solver, pH=7 is "Initial guess for solver" 3</pre>	26 #method 0 set surfac 26 #method 1 include su 27 #method 2 same as 1, 28 complex 29 method 2 30 GCa 1e-3 31 GCO3 1e-3 32 / end 33 #row 1 to 6 /* Set i 34 #row 1 35 solution 1 36 pH 7 37 Ca 0.013 38 Mg 0.0445 39 Cl 0.525 40 HCO3 0.002 41 Na 0.45 42 SO4 24e-3 43 K 0.01 44 Ba 0 45 Sr 0 46 / end 47 /end
$\frac{\partial c_{i}(t)}{\partial t} = \sum_{i} \xi_{ij} I_{j}, I_{j} = sgn(1 - \Omega_{j})(k_{1} + (k_{2}a_{H}) 1 - \Omega_{j}^{m} ^{n}.$ $k_{1} = k_{10}e^{\frac{E_{a1}}{R}\left(\frac{1}{298.15} - \frac{1}{T}\right)}, k_{2} = k_{20}e^{\frac{E_{a2}}{R}\left(\frac{1}{298.15} - \frac{1}{T}\right)}.$ US. GEOLOGICAL S	ION OF RATE PARAMETERS IINERAL INTERACTION R APPLICATION TO AL MODELING URVEY

https://pubs.usgs.gov/of/2004/1068/pdf/OFR_2004_1068.pdf

U.S. GEOLOGICAL SURVEY OPEN FILE REPORT 2004-1068

This PC	Bilde1.png	Bilde5.png	OneDrive - Internation							
tecycle Bin	Jilde2.png	emacs-22.3	R 1386 3.5.2			desktop	inì			
CR_11des	Bilde3.png	Idle	R x 64 3.5.2							
SSL hlumber	Eilde6.png	idle.bat -	ResInsight	Spotify i	File Home Share	View el Hiorth > K	urs2020 ~	ی Search Kurs2020		
		shorteat	Sharver			^	Name	Date modified	Туре	Size
ly mappe	Bok1.xlsx	Informasjon om SEARC	PDF SCA-2015	Thumbs.db	✤ Quick access ah pub 108		IORSimX.exe KURS-048.DATA KURS-048.geocheminp	07.12.2020 11.42 30.11.2020 15.10 07.12.2020 15.54	Application DATA File GEOCHEMINP File	1 466 KB 7 KB 2 KB
licrosoft	Bratvold	iTunes	Mediasite	OPM for IOR	2902412 2018		KURS-04B.trcinp RELPERM-281020.INC	07.12.2020 15.17 30.11.2020 15.10	TRCINP File Include File	2 KB 13 KB
J.K.f	Apr23 2018		Desktop	projects - I	GitHub	* * *				
CF Editor 2020.2	bursdag_M	Media Go		ONS-2013	Downloads Pictures	*				
tcycle Bin	Cygwin64 Terminal	Dyalog APL Version 11.0	godkjennin	XLaunch	IORSim Kurs2020 pdf					
PDF	1	\bigcirc	2		 OneDrive - NORCE 					
19_01_16	Bilde4.png	GitHub Desktop	Notepad++		 OneDrive - Universitet This PC 	et i Stavang				
					3D Objects Desktop					
esktop.ini					Documents					
					Music	*				

- 🗆 X

~ 0

BACKUP

A modular interface:

• Advection calculations separate from reactions

Block-by-block upstream integration

Can we extend to 3D?

- Yes, if there are no flow loop (tear up the loop)
- 3x3 Example

- Renumbering of ECLIPSE grid
- implicit integration of the concentrations if no flow loops are detected
- If flow loops, an explicit coupling is inserted to tear the flow loop
- The algorithm is fast (O(N))

The IORSim methodology on a complex computational problem:

- Fast full geochemical calculations
- Robust, efficient solution:
 - Transport and geochemistry solved **separately** and **implicit**
 - Global level (Flow) & Local (Block) level (non-linear physics chemistry)
 - Decompose reservoir into separate flow paths
 - Flow path is solved on a block sequentially:

IORsim course 10.12.20

Neptune Energy

Nentune Energy

Plan

- 1) Introduction
- IORSim general & tracer J. Sagen 2)

Helpdesk 11.12.20 10-12 J.L. Vinningland,

- I. Geochemistry 3)
- 4) I. Backward; Silicate B. Antonsen
- 5) Demo I. Backward

javi@norceresearch.no

6) Feedback

- B. Antonsen
- A. Hiorth
- J.L. Vinningland

	necepted	Neptune Energy
Soujatya Mukherjee	Accepted	Wintershall-DEA
Kristian Eide-Engdahl	Accepted	Lundin
Carl Joerg Petersen	Tentative	Wintershall-DEA
Udo Zimmermann	Accepted	UiS
Ove Sævareid	Tentative	NORCE
Kjersti Riiber	Accepted	UiS
Robert Moe	Accepted	ConocoPhillips
Egil Boye Petersen	Accepted	AKER BP
Gaël Chupin	Tentative	Lundin
Aksel Hiorth	Accepted	UiS
Jan Sagen		IFE
Børre Jacob Antonsen	Accepted	IFE
Jan Ludvig Vinningland	Accepted	NORCE
Jan Nossen	Accepted	IFE

Accepted

Accented

IORSim course

Reza Rostami Ravari

Andrea Johanne Reinholdtsen

IORSim at Teams at UIS/IOR Centre

Gener	ral $>$ 07 Delivery Forum and Deliverables $>$ 7 -	Final Deliverables > IOF	RSim
0 D	∥Name ∨	Modified \checkmark	Modified By \smallsetminus
	Cases	Monday at 11:45 AM	Børre Jacob Anton
	GUI_IORSim-Forward	A few seconds ago	Børre Jacob Anton
	IORSim	Tuesday at 1:17 PM	Børre Jacob Anton
	Presentations-documentation	Tuesday at 8:06 PM	Børre Jacob Anton
	GUI_backward.zip	Yesterday at 1:22 PM	Jan Ludvig Vinningl

IORSim at Teams at UIS/IOR Centre

General	ightarrow 07 Delivery Forum and Deliverables $ ightarrow$ 7 - F	Final Deliverables 🗧 IOF	RSim > IORSim
\Box	Name \checkmark	Modified \checkmark	Modified By \backsim
	≥' backup	Yesterday at 1:20 PM	Aksel Hiorth
	ecl_convert.exe	Tuesday at 1:16 PM	Børre Jacob Anton
	ecl_tail_f.exe	Tuesday at 1:16 PM	Børre Jacob Anton
	IORSimX.exe	Tuesday at 8:03 PM	Børre Jacob Anton

General	> 07 Delivery Forum and Deliverables $>$ 7 - F	Final Deliverables $ ightarrow$ IOF	RSim > Cases
D	Name \checkmark	Modified \checkmark	Modified By \smallsetminus
	geochem	Tuesday at 10:12 AM	Aksel Hiorth
	Silicate	Tuesday at 12:51 PM	Børre Jacob Antor
	Tracer	Tuesday at 12:52 PM	Børre Jacob Antor

The National IOR Centre of Norway

IORSim at Teams at UIS/IOR Centre

Gener	al $ ightarrow$ 07 Delivery Forum and Deliverables $ ightarrow$	7 - Final Deliverables > IC	DRSim > IORSim
ß	Name \checkmark	Modified \lor	Modified By \smallsetminus
	backup	Yesterday at 1:20 PM	Aksel Hiorth
	ecl_convert.exe	Tuesday at 1:16 PM	Børre Jacob Anton
	ecl_tail_f.exe	Tuesday at 1:16 PM	Børre Jacob Anton
	IORSimX.exe	Tuesday at 8:03 PM	Børre Jacob Anton
General	> 07 Delivery Forum and Deliverables $>$ 7 - I	Final Deliverables 🗦 IORSim	> GUI_IORSim-Forward
D	Name \checkmark	Modified \lor Mod	lified By \smallsetminus
	IORSim_launcher.exe	Tuesday at 4:57 PM Bør	re Jacob Anton

GUI_backward.zip > GUI_backward					
	Name	Date Modified			
	cases_GUI.txt	2020-12-09			
	GUI_backward.exe	2020-12-09			
	icons	2020-12-09			
	input_GUI.txt	2020-12-09			
	IORSimX.exe	2020-12-09			
	settings_GUI.txt	2020-12-09			

IORsim for your simulation models

Name	Date modified	Туре	# Name IndxLow IndxHigh #*MODELINSTANCE Comp1 1111 150	
🐼 KURS-04B	09.12.2020	DATA File	*MODELINSTANCE Comp1 1 56 1 73 1 22 *WELLSPECIES	
KURS-04B.EGRID	09.12.2020	EGRID File	# Ninjwell	
🐼 KURS-04B	09.12.2020	GEOCHEMINP File	1	
KURS-04B.INIT	09.12.2020	INIT File	I1	
🐻 KURS-04B	09.12.2020	RFT File	# Ntime 1	
KURS-04B	09.12.2020	TRCINP File	# Inj Comp: # Time # Ca. Ma Cl. #CO2 Na SON K Ba Sw Temp	
KURS-04B.UNRST	09.12.2020	UNRST File		
KURS-04B.DAT	A file		#*DT 1.0 #*TMAX 1000.0 #*DTOUT 5.0	
Restart output RPT <mark>RS1</mark> 'BASIC=2' ALLPROPS=2			*OUTPUT 2 P1 P2	
FLOWS PRES / WRFTPLT I1 NO REPT P1 NO REPT P2 NO REPT 'OBS' NO REP	/ / / T /			The National IOR Centre of Norway

IORSim Backward

10.12.20 B. Antonsen

IORSim Backward

The National

IOR Centre

of Norway

- IORSim Backward modus interacts with Eclipse at every reporttimestep.
- It can be used for simulation of water diversion with injection of sodium silicate.
- IORSim calculates the generation and location of silicate gel resulting in reduced permeability.
- The permeability is dynamically updated in the Eclipse model by reduced relative permeabilities (SATNUM).

IORSim - A Simulator for Fast and Accurate Simulation of Multi-phase Geochemical Interactions at the Field Scale

By A. Hiorth, J. Sagen, A. Lohne, J. Nossen, J.L. Vinningland, E. Jettestuen and T. Sira
Publisher: European Association of Geoscientists & Engineers
Source: Conference Proceedings, ECMOR XV - 15th European Conference on the Mathematics of Oil Recovery, Aug 2016, cp-494-00142

Gels used in field operations

Slide 9

Snorre – Field pilot operation: June 2013 - October 2013

- 1,5 months Pre-slug: 113 500 m3
 - Desalinated seawater
 - Added concentrated KCI
- · 3 months Silicate injection: 240 000 m3
 - Concentrated Silicate
 - Diluted with desalinated water
 - pH adjustment with HCl (diluted from concentrated acid)
- 0,5 month Post-slug: 49 000 m3
 - Desalinated seawater
 - Added concentrated KCI
- Continue water injection from the Snorre platform

FStatoil

K. Skrettingland presentation, 2016

More Than 12 Years' Experience With a Successful Conformance-Control Polymer-Gel Technology

R.D. Sydansk, SPE, and G.P. Southwell, SPE, Marathon Oil Co.

Fig. 1–Production response to the CC/AP gel treatment applied to injector O-7 in the SOB field.

SPE Prod. & Facilities, 2000 1400 gel applications.

Gelation time

• $t_g = A e^{\alpha C_Si} e^{\beta C_HCL} e^{\gamma \sqrt{C_Ca}} e^{Ea/RT}$

A= 8.75 10^{-10} days, α =-0.6 1/wt%, β =-0.7 1/wt%, γ =-0.1 1/Vppm, Ea=77kJ/mol (From Stavland, Jonsbråthen, Vikane, Skrettingland, Fisher, 2011)

Permeability modification

•
$$\frac{k}{k_0} = (1 + 275 Y S_w \sqrt{\frac{k_0}{\varphi_0}})^{-2}$$

- Y is the weight fraction of sodium silicate precipitated per mass of water.
- Blocking of pores happens when gel conc. is about 0.3 wt% (Based on experiments)
- For "IORSim Backward" permeability modification is transferred as scaling of relative permeability Eclipse SATNUM is transferred.

Test model

Pressure

Permeability

Silicate model Input

	#	
U *TEMPERATURE	*MODELTEMPLATE Comp1 *TINIT 95.0	
*GRIDPLOT_WRITE *GRIDPLOT_FILE FORMATTED	<pre># cpWat cpOil cp Gas cpRock 3.9 2.1 2.1 1.0</pre>	
*N_TRACER 0	<pre># Water density, test value # Oil density, test value # Gas density, test value</pre>	
*REACTING_SYSTEM /	# Rock density, test value	
*TRACER_LGR	# rowat roull ro Las rokock 999.9 800.0 400.0 2350.0	
# n_lgr 0	#*COMP 0. 0. 0. 0.4 # Name IndxLow IndxHigh IndyLow IndyHigh IndzLow IndzHigh	
*INTEGRATION	*MULLINSTANCE COMPI 1 20 1 20 1 10 *WELLSPECIES	
# tstart tstop 0.0 1.e99	# Ninjwell 1	
# dtmin dtmax 0.0 1.e99	# # Wellname I1	
# dtecl dteclmax 5 20	* Ntime 3 * Time Comp 0.0 0 0 0.04089 0 20 Silicate and HCI	
# metnum O	200 5 0 5.0 0. 0 20 265 0 0 0 0.04089 0 20 #	
solver sparskit2	#*DT 1.0 #*TMAX 1000.0	
*integrate_species	(#*DTOUT 5.0 *01179117	
*MODELTYPE SILIKAT	2 # number of output wells P1	
*SPECIES Silica *SPECIES MobGel	P2	Matternal
*SPECIES HOLD	0.0 0.01 /	The National
*SPECIES ImMobGel		of Norway

Model templates

Field production

Recovery – remaining oil in-place

Recovery per layer

Water injection and production

Final – gel and SATNUM

No gel in low permeability layers

IORSim backward GUI

Temperature effect

Summary

- IORSim backward modus couples Eclipse and IORSim dynamically.
- Communication takes place through update of SATNUM (relperm tables)
- Technical (simulation) stability has improved significantly
- Very nice GUI created
- Work ongoing for handling well schedule (no problem in Forward)

But sometimes this happens

IORSim

Adding IOR effects to field scale simulations by

coupling to the host simulator Eclipse

Our traditional experience in proposing projects

Our approach now – IORSim

IORSim features

- Geochemical module
- Silicate module
- Chemical species partitioning between the water, oil and gas phase
- The tool allows for taking an existing Eclipse field model, adding:
 - Changes in the water chemistry, low salinity and "smart water"
 - Changes in production due to smart water addition
- The tool may be coupled to other simulators than Eclipse
- IORSim simulates on a separate grid relative to the host simulator (separate grid refinement)

Partitioning species

Sequential solution method in IORSim

The National

- Sequential method is needed since species transport is combined with geochemistry
- Sequential method for water species
- Sequential method for temperature calculation
- Sequential method for partitioning species

Tracer simulations in "KURS-04B"

Temperature

		Tm inj. (d)	Peak (d)	D_t (d)	Peak_Dt
T11	Ideal	100	402	302	
T12	K=2	100	662	562	260
T21	Ideal	950	1212	262	
T22	K=2	950	1432	482	220

Why can't we solve it in the «normal» way?

- Difficult to converge
- Long computing time

To include geochemistry, we need to «localize» the problem

How can we make c_{in} known in advance ?

Answer: Solve it first

We need to make the problem «1D»

How can we make the problem «1D»:

Block sequences that will work:

1, 2, 3, 4, 5, 6, 7, 8, 9

1, 4, 7, 2, 5, 8, 3, 6, 9

22.12.2021

Turning the flows:

Block sequences that will work:

9, 8, 7, 6, 5, 4, 3, 2, 1

9, 6, 3, 8, 5, 2, 7, 4, 1

22.12.2021

The sequential method for water species in IORSim: Boxes Flows Injector Sequence Image: Sequence Injector Image: Sequence Image: Sequence Image: Sequence Image: Sequence Image: Sequence Image: Sequence

Producer

IncludeBox routine

Checks for alle inflows into a box, if the upstream box is included. If not: Call IncludeBox for this box, and include box in sequence vector

140

120

100

80

60

40

20

 \cap

0 Temp

Tracer simulations in "KURS-04B"

l			Tm inj. (d)	Peak (d)	D_t (d)	Peak_Dt
	T11	Ideal	100	402	302	
	T12	K=2	100	662	562	260
	T21	Ideal	950	1212	262	
l	T22	K=2	950	1432	482	220

Temperature

FipVig 2014.2

Partitioning species

- The sequential method for water species has been extended to handle species which exist in all three phases (water, oil, gas)
- Species are assumed to be in equilibrium between the phases
- The concentration in each phase is calculated as Cw = Kw*C, Co = Ko*C, Cg = Kg*C
- Concentration C is calculated for all grid blocks at each time step
- Kw, Ko, Kg may be dependent on P, T and composition
- The partitioning species option in IORSim may be useful for instance when CO2 is present in water, oil and gas

The sequential method for partitioning species

Strategy:

When Cw*Fw > Cw*K*Fo we use new concentration (implicit) for the water term

When Cw*Fw < Cw*K*Fo we use new concentration (implicit) for the oil term

Stability analysis

• Assuming use of the implicit (new) concentration in the water transport term, and explicit (old) concentration in the opposite direction oil term

(Semi-implicit method)

• Børre Antonsen performed stabiliy analysis and showed the following inequality:

$$\Delta t \frac{Fw - K * Fo}{(s + (1 - s) * K)} \ge -V$$

where Fw is water rate, Fo is oil rate, K is species partitioning coefficient between water and oil , $Co = K^*Cw$

• This shows that the method is always stable when Fw > K*Fo

IORSim_launcher

IORSim Launcher		_		×
IORSim Version r/ Case Dir an	build_IORSim/bin/release/IORSimX.exe Browse ERROR MESSAGES Browse ERROR MESSAGES			
Case name	Run IORSim EST3			
PLOT Well n	Plot file treconc. treprd.treconc.	MULTI CASE F	PLE PLOT	
Run Dynamic runnei path	m_ r.py IORSim_runner parameters Browse IORSIM runner.py			

IORSim_launcher

The National IOR Centre of Norway

IORSim launcher

Grid refinement for species grid

Mass conservation of one phase:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \underline{v}) = 0$$

$$\rho = \rho(t): \quad \frac{1}{\rho} \frac{\partial \rho}{\partial t} + \nabla \cdot \underline{v} = 0$$

Inclusion of compressibility:

$$V\frac{\partial\rho}{\partial t} = \frac{dM}{dt} = \rho(Q - \sum_{i} Q_{i}) \qquad \longleftrightarrow$$

$$\frac{1}{o}\frac{\partial\rho}{\partial t} = \frac{Q - \sum_{i}Q_{i}}{V}$$

Final pressure equation to be solved:

$$-\nabla \cdot (\underline{v}) = \nabla \cdot (K\nabla P) = \frac{Q - \sum_{i} Q_{i}}{V}$$

The National IOR Centre of Norway

IFE S

NORCE

