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Introduction
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Workflow:

The closed-loop robust decision workflow for reservoir management (Jansen et al., 2009).
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Workflow

Workflow of DIGIRES Concept.
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Introduction - REEK Case

Reek Model:
• Model size: 40 × 64 × 14
• Wells: 5 producers, 3 injectors.
• Control mode: BHP (producers), BHP (injectors).
• Yearly recursive model update: 12 months × 5 years.
• Geological realizations: 100
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Optimization - Objective function

• Objective function:

NPV =

Nt∑
i=1

R(ti)
(1 + d)ti/τ

,

• Revenue term:

R(ti) = Qop(ti) · rop − Qwp(ti) · rwp − Qwi(ti) · rwi.

Qop,Qwp,Qwi - rates of oil, water production and water injection.
rop, rwp, rwi - corresponding prices/costs for oil, water production and water injection.
d - discount rate, ti - report time, τ - total number of days per year.
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Ensemble based optimization (EnOpt)

• Pre-conditioned steepest ascend:

xk+1 = xk + ηkC∇Jk

• Gradient approximation with geological uncertainty:

∇Jk ≈ N−1
N∑

i=1

[J(xi
k, yi)− J(xk, yi)][xi

k − xk]

• For more information we refer to:
Chang et al. (2019), Stordal et al. (2016), Chen et al. (2009), Lorentzen et al. (2006)
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Optimization Settings

• EnOpt with backtracking is applied, N = 100.

• Control variables are drilling priorities of 8 wells.

• The starting point of drilling priorities follows uniform distribution, X ∼ U(0, 1).

• The initial value for the stepsize is 0.1 and for the ensemble perturbation covariance is
0.01.
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HM - Subspace EnRML

• An updated ensemble realization, xa
j :

xa
j = xf

j + Awj,

• The cost function in the Ensemble Subspace:

J(wj) =
1
2

wT
j wj +

1
2

(
g(xf

j + Awj)− dj

)T
C−1

dd

(
g(xf

j + Awj)− dj

)
.

xf
j - the prior realization. wj - the ensemble anomaly.

• For more information we refer to:
Evensen et al. (2019), Evensen (2021).

8 / 29



  

History Matching Settings

• Subspace EnRML is applied, number of realizations N = 100.

• Observations: WOPR, WWPR, WWIR of existing wells.

• Observation error: relative variance is 5%, absolute variance is 64 for WOPR and
WWPR, 25 for WWIR (for observation values lower than 10).

• Parameter boundries: PERMX ∼ [e−5, e8.5], PORO ∼ [0.001, 0.5], MULTFLT ∼ [0, 0.7].

• Step size γi at iteration i:

γi = t2 + (t1 − t2) · 2(−(i−1)/(t3−1)),

where, the maximum step length t1 = 0.5, the minimum step length t2 = 0.2, and the
step length decline factor t3 = 2.5 (Evensen, 2021).
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Decision Stage 1
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Opt1 - obj. vs. iter

Mean NPV vs. iter NPVs of the best run Decision

Optimization of the decision Stage 1. Wells OP-1 and WI-2 are drilled after the optimization.
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HM1 - obj fn.

Cost function of HM1.
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HM1 - Production profiles

(a) WOPR, OP_1 (b) WWPR, OP_1 (c) WWIR, WI_2

Production profiles for existing wells.
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Decision Stage 2
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Opt2 - obj. vs. iter

Mean NPV vs. iter NPVs of the best run Decision

Optimization of the decision Stage 2. Wells OP-4 and WI-3 are drilled after the optimization.
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HM2 - obj fn.

Cost function of HM2.
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HM2 - Production profiles

(a) WOPR, OP_1 (b) WWPR, OP_1 (c) WWIR, WI_2

(d) WOPR, OP_4 (e) WWPR, OP_4 (f) WWIR, WI_3

Production profiles for existing wells.
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Decision Stage 3
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Opt3 - obj. vs. iter

Mean NPV vs. iter NPVs of the best run Decision

Optimization of the decision Stage 2. Wells OP-2 and OP-3 are drilled after the optimization.
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Summary - Uncertainty of optimization steps

(a) Opt1 (b) Opt2 (c) Opt3

Uncertainty is reduced during the workflow.
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HM3 - obj fn.

Cost function of HM3.
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HM3 - Production profiles

(a) WOPR, OP_1 (b) WWPR, OP_1 (c) WWIR, WI_2

(d) WOPR, OP_4 (e) WWPR, OP_4 (f) WWIR, WI_3

Production profiles for existing wells.
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HM3 - Production profiles cont.

(a) WOPR, OP_2 (b) WWPR, OP_2

(c) WOPR, OP_3 (d) WWPR, OP_3

Production profiles for existing wells.
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MULTFLT updates - HM steps

(a) HM1 (b) HM2 (c) HM3

Fault multiplier updates for all history matching steps. Grey, blue and red circles represent prior,
posterior and reference values.
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MULTFLT updates - HM steps

(a) HM1 (b) HM2 (c) HM3

Fault multiplier updates for all history matching steps. Grey, blue and red circles represent prior,
posterior and reference values.
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Decision Stage

26 / 29



  

Decision on the last two wells

Comparison of the three decision scenarios on whether to drill the last two wells.
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Summary

• The DIGIRES Concept of combining optimization and history matching as a
decision-making workflow is demonstrated on the REEK case.

• Multiple starting points help the optimization algorithm to find solutions that are closer
to the global optimum.

• History matching helps to update the model and achieve better understanding on
model uncertainty, which can assist the optimization step to obtain more robust
solutions.

• Performing optimization and history matching iteratively provides decision-makers
better tools for reservoir management.
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Impact of Risk Attitude on 
Reservoir Management Decisions

Aojie Hong

Decision and Data Analytics Group

Department of Energy Resources

University of Stavanger

1



Agenda

2

1. How to model risk attitude?

2. What is the impact of risk attitude on reservoir 
management decisions in the long term?

3. How to incorporate risk attitude in ensemble-
based optimization?



“A good decision is an action we take that 
is logically consistent with the alternatives 
we perceive, the information we have, and 
the preferences we feel.”

3

– Ronald A. Howard



“A good decision is an action we take that 
is logically consistent with the alternatives 
we perceive, the information we have, and 
the preferences we feel.”

4

– Ronald A. Howard
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The petroleum industry is risk-averse in general.

Study on the 50 largest US-based oil companies from 1983 – 2002 
(Walls 2005):

• All 50 companies are risk-averse.
• The larger (wealthier) a company is, the less risk-averse it is.

How to consistently account for 
risk-attitude in decision making?
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Modeling Risk Attitude



The expected utility theory is the normative model for 
accounting for risk attitude in rational decision making.

• Von Neumann and Morgenstern (1947) developed the expected 
utility theory (EUT) based on a few axioms/rules.
o A rational decision maker following these rules must have a 

utility function.
o A decision maker using a utility function automatically obeys 

these rules and will make rational decisions under uncertainty.

7

• EUT has been pragmatically applied in economics, decision 
analysis, and game theory.

• Daniel Bernoulli (1738) proposed the concept of utility.
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Utility Functions for Risk-Averse, Neutral, and Seeking.
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Exponential Utility Function:
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• 𝜌 < 0: risk-seeking
• 𝜌 > 0: risk-averse
• 𝜌 → ±∞: risk-neutral

(𝜌: risk tolerance)
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The objective is to maximize the expected utility (EU).



Risk Neutrality

10

Wealth,  

U
ti

lit
y,

  
  

 
Expected monetary value maximization is a 

special case of expected utility maximization. 

Linear Utility Function

Expected Utility Maximization
=

Expected Monetary Value 
Maximization
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A person can have mixed risk attitudes.
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Impact of Risk Attitude on Reservoir 
Management Decisions in Long Term



• Decline curve-based production model with 1 injector and 4 producers.
• Simulate 1,000 projects and 500 realizations for each project.
• Draw 1 realization randomly as the truth for each project.
• Optimize the injection rate over a life cycle of 5400 days (15 years) for each project.
• Use the exponential utility function.
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(Hong and Bratvold. Impact of Risk Attitude on Reservoir Management Decisions. Unpublished manuscript. 
Distribution of the results without the authors’ authorization is not allowed.) 
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Cum. NPV Rejected
Projects

Negative 
Realized NPVs

SD of 
Realized NPVs

Risk-Averse ↓ ↑ ↓ ↓

Risk-Neutral max - - -

Risk-Seeking ↓ ↓ ↑ ↑

• Being risk-neutral maximizes the cumulative (or long-term) NPV.

• Being risk-averse reduces the cumulative NPV but leads to fewer negative 
realized NPVs and smaller standard deviation of realized NPVs.

• Being risk-seeking neither increases cumulative NPV nor reduces the 
number of negative realized NPVs and standard deviation of realized NPVs.

• Being relatively more risk-seeking from risk-averse toward risk-neutral can 
increase cumulative NPV.

Being risk-neutral maximizes the cumulative NPV. 
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Incorporating Risk Attitude in 
Ensemble-based Optimization



It is straightforward to perform expected utility 
maximization using any expected value optimizer. 

19

Alt 1 … Alt N

Real 1 𝑁𝑃𝑉11 … 𝑁𝑃𝑉1𝑁

… … … …

Real M 𝑁𝑃𝑉𝑀1 … 𝑁𝑃𝑉𝑀𝑁

EMV 𝑬𝑵𝑷𝑽𝟏 … 𝑬𝑵𝑷𝑽𝑵

Expected Value 
Optimizer

Optimal Alternative
with Max ENPV

Alt 1 … Alt N

Real 1   𝑁𝑃𝑉11 …   𝑁𝑃𝑉1𝑁 

… … … …

Real M   𝑁𝑃𝑉𝑀1 …   𝑁𝑃𝑉𝑀𝑁 

EU 𝑬𝑼𝟏 … 𝑬𝑼𝑵

Expected Value 
Optimizer

Optimal Alternative
with Max EU

Utility Function
  𝑁𝑃𝑉 
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ഥ − 𝑐𝜎𝑤
2

Mean-variance maximization can be replaced by 
expected utility maximization of exponential utility function.

Max
  =

𝑒
−
𝑤
𝜌 , 𝜌 < 0

−𝑒
−
𝑤
𝜌 , 𝜌 > 0
 , 𝜌 → ±∞

𝔼[    ]

Max

𝜌 =
1

2𝐶

Advantages of using EU maximization: 

• Mean-variance maximization can be inconsistent for 
non-normal distributions. EU maximization is 
consistent for any distributions.

• No need to calculate variance during optimization: EU 
maximization suits any EV optimizer (e.g., EnOpt).
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Example with Reservoir Simulation Model

• 2D model with 100 realizations.
• Monetary value measure is NPV.
• Exponential utility function is used for different risk tolerances.
• Optimize the injection rates over a life cycle of 60 months (60 control variables).
• EnOpt is used for EU maximization.

Injector Producer Injector Producer Injector Producer

ln(permeability)6 9

Realization 1 Realization 51 Realization 100
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Sensitivity Analysis of Risk Aversion 
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Sensitivity Analysis of Risk Aversion 
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• The expected utility theory is the normative model for accounting for 
risk attitude in rational decision making.

• Impact of risk attitude on the long-term profit over many projects:
o Being risk-neutral maximizes the long-term profit.
o Being risk-averse reduces the variance of realized project profits.

• The mean-variance maximization can be replaced by the expected 
utility maximization of an exponential utility function.

• Risk attitude can be easily accounted for in ensemble-based 
optimization when a utility function is used.

• Sensitivity analysis of risk attitude provides useful insight to support 
decision making under uncertainty.
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Take-Away Messages 





•

•

•

•



•

•

•

•

•

•

•

•

•

•



Real 1

Cluster

Integrated modelling chain

Real nReal 2

W
o
rk

fl
o
w

 M
a
n
a
g
e
r 

(E
R

T
)

Multi realisation analysis



R
ec

o
m

m
en

d
ed

 f
o

r 
al

l 



•

•

•

•

•

•

•









•

•

•



•

•

•

•





National IOR Center Workshop on Production Optimization, Value of Information and Decision-Making, On-line, 7-8 September 2021 1

Historical developments in

production optimization

(from a reservoir-engineering perspective)

Jan Dirk Jansen

Delft University of Technology

National IOR Center Workshop on Production 

Optimization, Value of Information and Decision-Making

On-line, 7-8 September 2021
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Closed-loop reservoir management
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1) “Open-loop” flooding optimization
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• 3D reservoir

• High-permeability channels

• 8 injectors, rate-controlled

• 4 producers, BHP-controlled

• Production period of 10 years

• 12 wells x 10 x 12 time steps

=> 1440 optimization parameters

• Bound constraints on controls

• Optimization of monetary value (oil revenues minus water costs)

Van Essen et al., 2006

12-well example (1)
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12-well example (2)
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12-well example (3)
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• Real wells are sparse and far apart

• Real wells have more complicated constraints

• Field management is usually production-focused

• Long-term optimization may jeopardize short-term profit

• Production engineers don’t trust reservoir models anyway

• We do not know the reservoir!

Why this wouldn’t work



National IOR Center Workshop on Production Optimization, Value of Information and Decision-Making, On-line, 7-8 September 2021 8

Data

assimilation

algorithms

Noise OutputInput NoiseSystem 

(reservoir, wells

& facilities)

Optimization

algorithms
Sensors 

System models

Predicted output Measured output

Controllable

input

Geology, seismics,

well logs, well tests,

fluid properties, etc.

2) “Robust” open-loop flooding optimization
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• 100 realizations

• Optimize expectation of objective function

Van Essen et al., 2006

Robust optimization example
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3 control strategies applied to set of 100 realizations:

reactive control, nominal optimization, robust optimization

 

Fig. 3: Cumulative Distribution Function and Probability Density 
Functions based on the first set of 100 realizations of the reactive 
control strategy, the 100 nominal optimization strategies and the 
robust optimization strategy. 
 

Van Essen et al., 2006

Robust optimization results
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3) Closed-loop flooding optimization
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“Digital twin”
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• Global versus local

• Gradient-based versus gradient-free

• Constrained versus non-constrained

• ‘Classical’ versus ‘non-classical’
(simulated annealing, particle swarms, etc.)

• We use ‘optimal control theory’ or ‘adjoint-based’ 
optimization

• Has been proposed for history matching (Chen et al. 
1974, Chavent et al. 1975, Li, Reynolds and Oliver 2003) 
and for flooding optimization (Ramirez 1987, Asheim
1988, Virnovski 1991, Zakirov et al. 1996, Sudaryanto
and Yortsos, 2000, Brouwer and Jansen 2004, Sarma et 
al. 2004)

Optimization techniques
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• Gradient based optimization technique – local optimum

• Gradients of objective function with respect to controls 

obtained from ‘adjoint’ equation 

• Gradients can be used with steepest ascent, quasi Newton, 

or trust-region methods 

• Results in dynamic control strategy, i.e. controls change 

over time

• Computational effort independent of number of controls

• Output constraints not trivial; various techniques used

• Implementation is code-intrusive

Optimal control theory, summary
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• 45 x 45 grid blocks

• 45 inj. & prod. segments

• pwf, qt at segments known

• 1 PV injected, qinj = qprod

• oil price ro = 80 $/m3

• water costs rw = 20 $/m3

• discount rate b = 0% 
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Brouwer and Jansen, 2004, SPEJ

Classic example; smart horizontal wells
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Conventional (equal pressure in all segments, no control)
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NPV

+60%

Production

+ 41% cum oil

- 45% cum water
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• Limited energy available 

• Total injection/production rate dependent on number of 

active wells

Pressure-constrained operation
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• Bang-bang (on-off) solution

• Necessary condition: linear controls, linear constraints
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Optimum valve-settings (2)
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All the action is around the heterogeneities
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sw at 2 days sw at 12 days sw at 129 days sw at 199 days

sw at 272 days sw at 386 days sw at 603 days

Optimum valve settings (3)

Streaks act as well 
extensions

Presence of 
heterogeneities 

essential for 
optimization
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Optimum valve-settings (4)
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No need for 45 segments per well

Van Essen et al., 2010: Optimization of smart wells in the St. Joseph field. 

SPE REE 13 (4) 588-595. DOI: 10.2118/123563-PA. 
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Life-cycle optimization vs. reactive control (1)
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Life-cycle optimization vs. reactive control (2)
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• Life-cycle optimization attractive for reservoir engineers

– Increased NPV due to improved sweep efficiency

• Not so attractive from production engineering point of view

– Decreased short term production

– Erratic behavior of optimal operational strategy
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• Take production objectives into account by 
incorporating them as additional optimization criteria:

• Formal solution:
– Order objectives according to importance

– Optimize objectives sequentially

– Optimality of upper objective constrains optimization of 
lower one

• Only possible if there are redundant degrees of 
freedom in input parameters after meeting primary 
objective

Hierarchical optimization
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Objective function with ridges
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• 3D reservoir

• 8 injection / 4 production wells

• Period of 10 years 

• Producers at constant BHP

• Rates in injectors optimized

• Primary objective: undiscounted

NPV over the life of the field 

•Secondary objective: NPV with very high discount factor

(25%) to emphasize importance of short term production

Example: Hierarchical optimization using null-

space approach (1)
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Van Essen et al., 2011, SPEJ
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Model based optimization – Conclusions (in 2017)

‘Well control’ optimization :

• Adjoint-based techniques work well; constraints, regularization, 

storage, efficiency, still to be improved

• Streamlines, gradient-free, particle swarms, EnOpt, StoSAG

Well location optimization (not discussed):

• Gradient-free seems to work best

• Combination with rate optimization

Field implementation:

• Well control optimization: none reported

• Acceptance will require combi with short-term optimization

• Computer-assisted history matching: thriving!

• Well location/trajectory optimization: up and coming!

• Advisory mode – tools for discussion 
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Problem definition

• Problem definition 
objective function (monetary value)

control vector (parameterizing the 
operational or development strategy)

equality constraint functions

inequality constraint functions

lower and upper control bounds

• Solution 

• Solution approach: iterative gradient-based minimization

2TNO  |  Ensemble Optimization

approximate gradient

search direction



Stochastic approximation

• Stochastic approximation for nonlinear root finding (Robbins 

and Monro, 1951)

• and adopted a solution strategy

• RM51 assumed availability of a noisy estimate

noise vector

gain (step size)

• Sufficient conditions for convergence were formulated in the 

50’s and 70’s (gain sequence, noise, direction of estimate)

• For unconstrained function optimization:

3

system of n nonlinear equations in x

TNO  |  Ensemble Optimization



Directional derivatives

• Function approximation by Taylor series expansion (               )

• Centered directional derivative

• Finite difference gradient estimate:

4TNO  |  Ensemble Optimization



RDSA

• Random Direction Stochastic Approximation (Ermoliev, 1969)

• Define

5TNO  |  Ensemble Optimization

• Expected value

random direction



SPSA

• Simultaneous Perturbation Stochastic Approximation (Spall, 

1992). 

with

• Expected value

• Used in combination with symmetric Bernoulli distribution and 

prescribed gain sequence 

6TNO  |  Ensemble Optimization



Generalized SPSA

• Li and Reynolds (2010) proposed a one-sided ensemble version 

of RDSA with Gaussian perturbations for history matching

• Lower-order estimate than RDSA at half the computational cost

7

• Average full gradient vector over an ensemble

TNO  |  Ensemble Optimization



Stochastic noise reaction gradient

• Stochastic noise reaction (Koda and Okano, 2000).

8

• Expected value (assuming pi ~ N(0,σi
2))

TNO  |  Ensemble Optimization



Simplex gradient

9

• Define the one-sided directional derivatives

• Kelley (1997): construct F and V with i = 2,…, n+1 and solve

row i-1 of Velement i-1 of F

• V must be nonsingular. Kelley (1997) used simplices of a 

Nelder-Mead algorithm and derived

simplex diameter

simplex condition

TNO  |  Ensemble Optimization



• Regression

and with

Ensemble gradient

• Chen (2008): use Ne < n first-order random-directional 

derivatives and use ensemble-means as best guess.  

10

• For each i = 1, …, Ne

• Gradient

row i of X

TNO  |  Ensemble Optimization

• Pre-conditioned gradient estimate (assuming                )

Element i of F

Do and Reynolds (2013)



Model uncertainty

• Consider that                      and that we wish to minimize

11

• Alternative objectives were investigated by Capolei et al. 

(2013) and Siraj et al. (2016). Chen et al. (2017) used 

ensemble gradients.

• Expected value gradient

• Fonseca et al. (2014; 2017) introduced and analyzed StoSAG

TNO  |  Ensemble Optimization

element i of F row i of X~



Real field application example

TNO  |  Ensemble Optimization 12

• Conventional wells

• 10-year life cycle with increased BHP

• 110 controls

• Reference case is reactive control

• 30% less water production

• 20% less water injection

• 4% higher NPV



Constrained ensemble optimization

• Problem definition with uncertainty

13

• Ensemble gradients of constraint functions can be obtained 

without additional cost!

TNO  |  Ensemble Optimization

Leeuwenburgh, Egberts, Chitu, and Alim SPE 174318, 2015.

• First addressed in ensemble context by Phale and Oliver 

(2014) for a deterministic problem.



Constraint gradient estimation

• Constraint functions can be evaluated for each perturbed 

input

14

• Lumping is generally needed for constraints that should be 

met at each simulation time step, e.g.

TNO  |  Ensemble Optimization

row i of C

• With uncertainty present constraints could be imposed in the 

expected sense

• A gradient for each constraint function can be estimated 

from

t
∆𝑡𝑙1 ∆𝑡𝑙2



Brugge example

• Deterministic modified Brugge model

• 30 wells with total of 1740 ICV controls

• 20-year life cycle

TNO  |  Ensemble Optimization 15

Leeuwenburgh, Egberts, Chitu, and Alim SPE 174318, 2015.

20 lumped field injection 

constraints

20 lumped field injection 
constraints + 600 
lumped well rate 
constraints



Perturbation magnitude

• The quality of the gradient approximation and the rate of 

improvement in the objective may be expected to depend 

on the perturbation magnitude

• This dependence may be different at early and late stages 

of the optimization process

TNO  |  Ensemble Optimization 16

• StoSAG is normally applied using a fixed 

perturbation standard deviation

• Idea: use an adaptive sampling strategy in 

which the perturbation magnitude is updated



Covariance Matrix Adaptation

• CMA is an evolutionary strategy proposed by Hansen (2006)

TNO  |  Ensemble Optimization 17

• The covariance (mutation) matrix from which the new 

offspring is sampled is updated in each iteration

• Updates are based on μ best-performing samples

• Rank-μ update based on current iteration

• Rank-1 update based on previous iterations

• Learning rates c have to be chosen by the user

Fonseca, Leeuwenburgh, Van den Hof and Jansen, SPE J, 2015; Stordal, Szklarz, Leeuwenburgh (2016) : natural gradient with Gaussian mutation matrix



Numerical experiments

• ICV settings for multi-layer smart well

TNO  |  Ensemble Optimization 18



• Motivated by properties of solutions to underdetermined 

problems

Optimal supersaturated designs

• Information matrix

TNO  |  Ensemble Optimization 19

• Optimal designs attempt to achieve near-orthogonality of S in 
order to minimize the variance of the estimator of 

• Minimize                          , or, for UE(s2) optimal designs

• UE(s2) optimal designs are also D-optimal – minimize the 

eigenvalue product of the estimator error covariance

• Construction of UE(s2) optimal designs is computationally 
expensive and difficult for n > 2000

Ramaswamy, Fonseca, Leeuwenburgh, Siraj, Van den Hof (2020)



Numerical experiments

TNO  |  Ensemble Optimization 20

• 100 Egg models

• 320 injection rate controls

• Fixed perturbation standard deviation of 0.1

• Fixed step size of 0.1 for gradient norm of 1

• Sampling strategies

– Multivariate Gaussian pseudo-random sampling

– Quasi-random sampling (Sobol)

– LHS designs

– UE(s2) designs

• Time correlation of 0 or 15 control intervals



Results

• 3 variants of UE(s2) 

sampling

• Robust optimization 

without perturbation 

smoothing

TNO  |  Ensemble Optimization 21

Sobol performance deteriorates 

when perturbations are smoothed



Risk measures

• Chen et al. (2017) performed optimization of various risk 

measures in a hierarchical framework using ensemble 

gradients and an augmented Lagrangian constraint treatment

– Expected value

– Worst case

– Conditional value at risk (CVaR)

– Standard deviation

TNO  |  Ensemble Optimization 22

• Original Brugge model

• Controls: injector rates, producer 

BHP, andf ICV settings

• Comparison is done for a fixed 

number of simulations



Results
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Chen, Fonseca, Leeuwenburgh, Reynolds, 2017.



Non-continuous controls and functions

• Appear naturally in field development problems

TNO  |  Ensemble Optimization 24

• Example: drilling sequence, well type for fixed set of 

nominated wells

• Priority controls for well ordering:



+11%

Robust joint order and WAG optimization

TNO  |  Ensemble Optimization 25

WI5

WI6

OP2

OP1

OP6 OP4

• Priority and phase controls 

• 25 model realizations

Feng, Leeuwenburgh, Hewson, Hanea, EAGE IOR2017.



Well placement

TNO  |  Ensemble Optimization 26

initial final



Well trajectory and drilling order

• Olympus benchmark case

TNO  |  Ensemble Optimization 27

Barros, Chitu and Leeuwenburgh, 2020



Related work and trends

• Selection of realization subsets

• Alternative optimizer algorithms

• Use of various types of surrogate models

• Use as part of CLRM and VoI workflows

• Non-hydrocarbon subsurface applications

TNO  |  Ensemble Optimization 28



Conclusions

• Optimization workflows based on ensemble gradients have 

shown great flexibility, efficiency and effectiveness

– Black box

– Applicable also in some settings with non-continuous f, x

• Have been shown to work with

– Nm, Np ~ 101 – 102

– n ~ 102 – 103

– Nc ~ 100 - 102

• The ensemble-based gradient estimation approach is also 

attractive in settings with uncertainty and/or output 

constraints

• Applications to actual field cases have demonstrated value

TNO  |  Ensemble Optimization 29
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Optimization Problems

Optimization Algorithms
▶ Gradient-based Deterministic Algorithms: Newton’s Method,

Conjugate Gradient Method, Adjoint Method, etc.
▶ Gradient-free Stochastic Algorithms: Genetic Algorithm,

Particle Swarm Optimization, etc.
▶ Stochastic Approximated-gradient Algorithms: EnOpt, SPSA,

etc.

Production Optimization
▶ Variables: locations, controls, pressures, etc.
▶ Objective functions

▶ Net present value (NPV)
▶ Cumulative oil production
▶ Minimize cost and emission

Source: Global Energy Experts.
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Reservoir Geological Uncertainty
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Simulation-based Optimization
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Optimization Under Uncertainty
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Ensemble-based Optimization
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Ensemble based optimization (EnOpt)
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Ensemble based optimization (EnOpt)

▶ Pre-conditioned steepest ascend:

xk+1 = xk + ηk C∇Jk

▶ Gradient approximation with geological uncertainty:

∇Jk ≈ N−1
N∑

i=1

[J(x i
k , y

i)− J(xk , y i)][x i
k − xk ]

▶ For more information we refer to:
Chang et al. (2019), Stordal et al. (2016), Chen et al. (2009), Lorentzen et al. (2006)
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OLYMPUS Field Case
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The OLYMPUS field

▶ The OLYMPUS field1 is prepared by TNO for the field development optimization
challenges.

▶ Field size: 9 km × 3 km, with 50 m of thickness. The field has 6 minor faults, with one
side bounded by a sealing fault.

▶ Reservoir model: 16 layers in total, with layer 8 as an impermeable shale layer.

1https://www.isapp2.com/optimization-challenge/problem-statement.html
11 / 23
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Optimization problem

▶ Olympus field: 11 producers, 7 injectors
▶ 50 different reservoir models
▶ Find optimal production strategy
▶ Ensemble-based optimization
▶ Previous study (Chang et al., 2019): Optimizing producer shut-in time and injector

pressure
▶ Now: Optimizing producers economic limits and injector pressure
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Objective function

▶ Objective function:

NPV =

Nt∑
i=1

R(ti)
(1 + d)ti/τ

,

▶ Revenue term:

R(ti) = Qop(ti) · rop − Qwp(ti) · rwp − Qwi(ti) · rwi .

Qop,Qwp,Qwi - rates of oil, water production and water injection.
rop, rwp, rwi - corresponding prices/costs for oil, water production and water injection.
d - discount rate, ti - report time, τ - total number of days per year.
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Constants for the field operation and NPV calculation

Table 1: Information used for NPV calculation and operation constraints for wells in Olympus Field

Contribution Value (Metric Units) Value (Field Units)

Oil price 283 ($/m3) 45 ($/bbl)
Water disposal cost 38 ($/m3) 6 ($/bbl)
Water injection cost 13 ($/m3) 2 ($/bbl)
Maximum plaform liquid production rate 14000 (m3/day) 88000 (bbl/day)
Maximum well oil production rate 900 (m3/day) 5700 (bbl/day)
Maximum well water injection rate 1600 (m3/day) 10000 (bbl/day)
Injector BHP (bar) 235
Producer BHP (bar) 150
Annual discount factor 0.08
End of the life cycle period (years) 20
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Uncertainty in the reservoir model
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Figure: Uncertainty in permeability field at selected layers (Layer 1 and Layer 9) of selected
geo-models #1, #25 and #50 (Unit: mD).

15 / 23



Optimizing well economic limits (WECON)

▶ EnOpt with backtracking is applied, N = 50.

▶ Control variables are well economic limits (WECON), and bottom hole pressures for
injectors (INJBHP).

▶ The initial value for the stepsize is 0.1 and for the ensemble perturbation covariance is
0.01.

▶ WECON values are scaled to [0.05, 1], INJBHP values are scaled to [0,1].

▶ The objective function is scaled by 10−8.
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Optimizing WECON

Table 2: Summary of experiment results (Unit of J: 108 USD).

Runs Nm Jinit Jmax Jmax_all Nsuccess_iter Ntotal_iter Nsim
Run 1 50 14.88 15.06 15.06 3 13 1400
Run 2 50 14.88 15.12 15.12 4 14 1500
Run 3 25 14.96 15.44 15.32 6 10 550
Run 4 25 14.79 14.95 14.99 2 6 350

Nm: # geological models, Jinit : average NPV – starting point, Jmax : average NPV – optimal point,
Jmax_all : average NPV – over all models (optimal point), Nsuccess_iter : # successful iterations,
Ntotal_iter : # total iterations (includes trial steps), Nsim: total number of simulations.

Table 3: Optimal values of WECON from Run 3.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
Optimal Values 0.90 0.78 0.75 0.80 0.92 0.74 0.89 0.80 0.78 0.87 0.83
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Optimizing WECON

(a) WECON (b) Objective function

Optimization results of Run 3. The red stars in the objective function plot represents the failed trial
steps during the optimization.
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Optimizing WECON and INJBHP

Table 4: Optimal injection pressure values (bar) of Chang et al. (2019).

I1 I2 I3 I4 I5 I6 I7
Optimal values 235 235 171 235 235 235 222

Table 5: Summary of experiment results (Unit of J: 108 USD).

Runs Init. WECON Init. INJBHP Nm Jinit Jmax Nsuccess_iter Ntotal_iter Nsim

R1 0.88 235 50 14.88 15.13 3 7 800
R2 0.88 Table 4 50 15.24 15.59 6 11 1200
R3 Table 3 Table 4 50 15.50 15.74 4 8 900

Note: The highest value achieved in our previous work Chang et al. (2019) was $15.48 × 108.
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Optimizing WECON and INJBHP

(a) WECON (b) INJBHP (c) Objective function

Optimization results of R3. The red stars in the objective function plot represents the failed trial steps
during the optimization.
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Summary and Discussions

▶ Well Economic Limits (WECON) for producers and well injection bottom hole pressure
(INJBHP) gave higher NPV than shut-in time and INJBHP used prevously.

▶ EnOpt shows its efficiency when handling the geological uncertainty. The number of
function evaluations used during the optimization is acceptable for situations when the
computation resources are limited.

▶ The selection of sub-groups for representing the uncertainty may need further
research.
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Introduction

Problem faced with continuous water flooding (CWF)

I Sweep efficiency in:
I highly heterogeneous reservoir
I unfavorable mobility ratio (in heavy-oil reservoir), λ = λo

λw
> 1

I high interfacial tension (IFT).

Early Water Breakthrough (≈ 94%) High oil residual saturation

Viscous Fingering (due to Heavy Oil) Reduced Oil Production

EOR classical approach:

Improve water flooding (WF) performance by:

1.) 0 < λ < 1. 2.) Wetability alteration. 3.) Reduce IFT

in the oil-water system. EOR methods for this purpose are:

1. Polymer (p) 2. Smart water (s) 3. CO2 (c).



Introduction (contd...)

Fixed slug size of EOR chemical injections (real field application)

I constant concentration or injection rate (given configuration of
wells)

I improve oil recovery (only moderate)

I environmental and economic impact

I need to optimize the EOR control/ operating strategies.

What is (and is not) in the literature ?

I general optimization procedure for EOR methods with no account
for reservoir uncertainties.

I objective function is the net present value (NPV)[Economic value]
with no account for back produced EOR

I value quantification and ranking of EOR method.



Introduction (contd...)

What we do:
I Perform general optimization procedure for EOR methods in the

face of reservoir uncertainties (Test: Polymer, Smart water, and
CO2 flooding)

I Applications using: 2D 5Spot and 3D Reek fields

I Quantify the economic value of optimal control.

(a) 5Spot field (b) Reek field



Model-based optimization for EOR methods

EOR control strategy, uµ.

Two things to bear in mind:

1. economic value in the face of reservoir uncertainties.
I ensemble of geological realizations, θ = {θi}Ne

j=1.
I reservoir performance index, NPV:

(uµ, θj)
Run sim.−−−−−→ J(uµ, θj) =

Nt∑
i=1

Rj(ti )

(1 + dτ )
ti
τ

, ∀j = 1, 2, ...,Ne ,

where

Rj(ti ) =roQo,i (uµ, θj) + rgQg ,i (uµ, θj)−
[
rwiQw ,i (uµ, θj)+

rwpQwp,i (uµ, θj) + rµeiQei,i (uµ, θj) + rµepQep,i (uµ, θj)
]

I Qo ,Qg ,Qw ,Qwp,Qei , and Qep are primary variables obtained from
solving fluid-flow equations (OPM-Flow simulator)

2. environmental impact (Back EOR or water produced).



EOR method (µ=p, s, c)

Control vector or strategy, uµ (for a given well configuration) includes:

I water injection rate/ bottom hole pressure (injectors)

I EOR concentration/ injection rate (injectors)

I oil production rate/ bottom hole pressure (producers).

I e.g. up =[(oil rate, water rate, polymer conc., bph)1, ..., ]

Nµ−dimensional constrained optimization problem

Let D ⊂ RNµ
be the domain of feasible control vectors uµ = {ui}N

µ

i=1,
with Nµ = Nwell × Nt for an oil reservoir with θ = {θj}Ne

j=1.

max
uµ∈D

[
Jθ(uµ) := J(uµ) :=

1

N e

Ne∑
j=1

J(uµ, θj)
]
,

s.t, ulowi ≤ ui ≤ uuppi and
Nc∑
r=1

ur ≤ Ctotal



Solution method

Optimization procedure (Oguntola and Lorentzen, 2020)

I select initial guess, uµ0 based on experimental fact

I updating scheme (Preconditioned GAM):

uµk+1 = uµk +
1

βk

Ck
uµGT

k

||Ck
uµGT

k ||∞
, ∀k = 0, 1, 2, ...,

I non-correlation (controls at different wells) and smooth variation
(controls at each well) with time; Ck

uµ .

I initial covariance matrix, C0
uµ using stationary AR(1) model:

Cov(um[t], um[t + h]) = σ2mρ
h
( 1

1− ρ2
)
, ∀ h ∈ [0,Nt − t],

I Adaptive scheme (Stordal et al. 2016): Ck
uµ , k 6= 0.



Solution method (contd...)

Preconditioned approximate gradient, Ck
uµGT

k

EnOpt approach (Chen et al. 2009): At kth iteration, uµk and Ck
uµ

(known)
I sample, uk,j ∼ N (uµk ,C

k
uµ), j = 1, 2, ...,N ≥ Ne ,

I random coupling (1-1 with geology): (uk,j , θj), j = 1, 2, ...,N,

(uk,j , θj)
Run sim.−−−−−→ J(uk,j , θj), j = 1, 2, ...,N.

Cross-covariance between uµk and J(uµk ) :

Ck
uµ,J(uµ) ≈

1

N − 1

N∑
j=1

(uk,j − uµk )
(
J(uk,j , θj)− J(uµk , θj)

)
.

By 1st-order Taylor series expansion on J(uµ) about uµk :

Ck
uµ,J(uµ) ≈ Ck

uµGT
k .



Case1: The 5Spot field

Controls:
µ=p:{Polymer conc., water

rate, oil rate}→ {ui}300i=1

µ=s:{Salt conc., water rate,
oil rate}→ {ui}300i=1

µ=c:{CO2 injection rate, oil
rate}→ {ui}250i=1

3-phase
flow (oil, water and gas) reservoir.
Dimension, 50× 50,∆x = ∆y = 100 m

I 1 injector (bhp = 500bars)
& 4 producers (bhp = 150bars).

I Light-oil reservoir.
I pySCAL generates:

I relperm input curves
I Corey parameterization

I Simulation period: 1500days,
time step: 30days.

I Fair comparison: Mass (per unit
time) equivalence for EOR injection
(density of C02 = 1.815kg/m3 )



Case 1: 5Spot field

Optimization parameters

β−10 = 0.3, σ2m = 0.01, ∀m = 1, 2, .., ρ = 0.5, and N = 10 perturbation.

Economic parameters

Parameter Value Unit

Oil price 500 USD/sm3

Price of gas 0.5 USD/sm3

Cost of polymer inj/prod 2.5/0.5 USD/kg
Cost of C02 inj/prod 1.2/0.1 USD/sm3

Cost of water inj/prod 30/30 USD/sm3

Cost of Smart water inj/prod 2.5/0.5 USD/kg
Annual discount rate 0.1 –

I Optimization of water flooding (same setup).



Optimal controls for producers (5Spot field)

(a) P1 (b) P2

(c) P3 (d) P4



Optimal controls for EOR-injection (5Spot field)

(a) CO2 injection rate (b) Polymer injection rate

(c) Smart water injection rate (d) Water injection rate



Value quantification (5Spot field)

(a) NPV variation (b) Field oil production



Case 2: The Reek field

Figure 5: Initial saturation map

Controls:
p:{Polymer conc., water
rate, oil rate} → {ui}407i=1

s:{Salt conc., water rate, oil
rate} → {ui}407i=1

c:{CO2 injection rate, oil
rate} → {ui}296i=1

3-zones, 6-faults (highly heterogeneous)
3D, 3-phase flow reservoir.
Dimension, 40× 64× 14.

I 3 injector & 5 producers.
I pySCAL generates:

I saturation maps
I solvent and gas rel perm tables

I Light-oil reservoir

I Fifty geological descriptions
(porosity, permeability, oil-water
contacts, facies, transmissibility
across faults)

I Simulation period: 1110days,
time step: 30days



Optimal controls for injectors (Reek field)

CO2 flooding:

(a) I1 (b) I2 (c) I3

Water flooding:

(d) I1 (e) I2 (f) I3



Optimal controls for injectors (Reek field)

Polymer flooding:

(a) I1 (b) I2 (c) I3

Smartwater flooding:

(d) I1 (e) I2 (f) I3



Optimal controls for producers (Reek field)

(a) P1 (b) P2 (c) P3

(d) P4 (e) P5



Value quantification (Reek field)

Figure 9: NPV variation



Value quantification (Reek field)

(a) Field oil production (b) Field water production



Conclusion

I EOR optimization workflow with appropriate objective and
applications

I Quantification of value of EOR methods

I Continuous CO2 flooding performs better than others
I Recommendation:

I Optimize different ionic concentrations than salt in smart water
problem.

I Sensitivity of uncertain parameters to different control strategies
leading to high oil production.

I Consider optimization problems with combined EOR methods.
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SUBSURFACE INTERPRETATION AND MODELLING (SIM)

3

High level E2E-process and main value targeted by EurekaX

Goal:

Increase speed and quality of business decisions via evergreen range of valid interpretations and reservoir models

Targetted improvements

• Optimized seismic images allowing more detailed interpretations

• Increased automation

• Improved asset involvement and discipline integration

• Quick-look ML products; ML-driven evergreen interpretations

• Quantified uncertainty of products

• Consistent process across assets

• Improved dataflow

• Increased automation

• Quantified impact of uncertainties



Area Start date / Project Purpose

NOAKA 2017 / Frøy Redevelopment evaluation

Skarv 2018 / Ærfugl Well planning

Ula 2019 / Tambar Infill evaluation

Ivar Aasen 2019 / Ivar Aasen Testing of ResX for IA

Alvheim 2019 / Vilje

2021 / Bøyla

Testing and reserves support

Infill evaluation

Valhall 2019 / Hod

2020 / Valhall

Hod PDO + well planning

Valhall new platform

evaluation

◼ Collaboration agreement with Resoptima entered mid-2018

• Support resources for ResX implementation 

• Collaborative effort on developing IRMA

◼ Testing and progressive application in all operated areas 

◼ New agreements with Resoptima from 2021

ResX in Aker BP

4



Main actions

◼ Perceived risk in achieving results. 

• Resources partly allocated

• Performed on the side of traditional workflows

◼ ResX: powerful but demanding workflow. 

• Only few teams get in control of their workflows, building 

independence from support

• Lack of learning across projects

• New projects or major updates needing tight support

◼ Difficulties in QC’ing, and in learning from ensemble updates

◼ Needs for QC of uncertainty centric approach expanded as 

compared to QC of deterministic models

◼ Recognized value of discipline integration and increased

decision robustness in projects that have been appropriately

resourced

Main Learnings

2020 Retrospective

5

◼ Competence development in Central team

• Testing to understand implications of using Adaptive Pluri-

Gaussian and Kalman smoother algorithms

• Tight follow-up and learnings from multiple projects

◼ Sprints

• Revised set-up of new ResX projects with 3week-sprints

• Training + de-risking

◼ IRMA development acceleration

• User feedback and testing of new IRMA functionalities

• Ideation process and collaboration with Resoptima for quick

implementation of interrogation tools in IRMA lab



Value of uncertainty centric workflows to date

6

Better definition 
of outcome 
distribution, thus 
project value

Saved cost by 
cancelling a well 
(initially identified 
in deterministic 
model)

Approved project 
based on plan 
optimization 
across range of 
outcomes

Better 
Project 

Decisions
Moving wells in 
more robust 
locations

Contingency 
plans for upsides 
and downsides

Better definition 
and justification 
of data needs

Optimized 
reservoir 
management

Better 
plans Quick updates 

post drilling via 
Robust set-up of 
workflows and 
team integration

Clear when to 
review geological 
concept and HM 
levers

Automated 
screening of 
opportunities

Speed and 
Automation

Better inputs for 
detailed well 
planning

Better 
Safety

◼ Main drivers:

o Enhanced work integration between disciplines

o Recognizing uncertainty both in data and interpretations

o Actually handling all data and having uncertainty studies constrained by data

o Workflow skills and automated data conditioning 



Challenge to research community

Simplify QC and learning process from ensembles

◼ Much R&D work towards integration of more data types and improving 

accuracy of methodology 

• Made it a powerful technique

• Further activities planned to handle alternative scenarios/concepts

◼ But “implementation challenges” to handle current products of existing 

workflows

• Much easier interrogation of ensembles achieved by collaboration 

with Resoptima and prototyping of apps to help learn from HM 

iterations

• Need for further standardization and simplification of analysis for QC 

of inputs and effective use of outputs, e.g:

- How to understand key drivers in changes?

- How to QC fitness of inputs to methodology? 

- How to assess true diversity of outputs?

- …

7

Example of App in IRMA

Comparing aggregated properties pre and post HM in 

localization regions



Uncertainty centric workflows are core to fully utilizing data and reaching digitalization ambitions

Summary and link to Strategy

8

Optimum 
decision
making

Automating
and 

Optimizing

Speeding up

Generating robust 
opportunities

Improving accuracy

Culture and competence

◼ Models are where we integrate data/information/knowledge from all 

disciplines to allow quality decisions

◼ Uncertainty centric modelling enables to extract more systematically

the value of this data:

• By handling and honoring all the data

• By allowing determination of robust plans

• By speeding up updates through workflows/automation

◼ Uncertainty centric modelling also allows a better identification of 

further data acquisition needs and determination of their value

◼ Efforts are still needed to process ensembles of models and fully

learn from the data conditioning process and exploit the results
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Key questions:
• Decisions about infill drilling or injection / production strategies.

- Uncertainty, heterogeneties and complex dependencies make this
choice difficult.

• Data gathering decisions about time-lapse seismic data.
- Which kind of data are likely to be valuable? When should data be 
gathered? How much data is enough?



Key questions:
• Decisions about infill drilling or injection / production strategies.

- Uncertainty, heterogeneties and complex dependencies make this
choice difficult.

• Data gathering decisions about time-lapse seismic data.
- Which kind of data are likely to be valuable? When should data be 
gathered? How much data is enough?

Wells drilled at the Gullfaks field, North Sea.

Well data

Geological
knowledge

time

Production

Time lapse 
seismic

Baseline 
seismic

Infill drilling



Key questions:
• Decisions about infill drilling or injection / production strategies.

- Uncertainty, heterogeneties and complex dependencies make this
choice difficult.

• Data gathering decisions about time-lapse seismic data.
- Which kind of data are likely to be valuable? When should data be 
gathered? How much data is enough?

Smeaheia CO2 storage site.

Well data

Geological
knowledge

time

CO2 injection

Time lapse 
seismic

Baseline 
seismic

Stop/Continue



Notation

• Uncertain reservoir variables:
- porosity, permeability, saturation, pressure,

fault properties, elastic properties
(some static, some dynamic)

• New information would include time-lapse seismic data:
- stacked acoustic impedance : (AI)
- pre-stack processing of AVO attributes : (R0,G)

( )1,..., nx x=x

( )1,..., my y=y

( )p xPrior model:

Likelihood model:

( )|p y x

Bayesian setting:

( ) ( ) ( )
( ) ( ) ( ) ( )|

| , |
p p

p p p p
p

= =å
x

y x x
x y y y x x

y



Bayesian updating

• What data is valuable? 

• Study the expected effect of data,
before it is collected. 

• We gather data not only to reduce
uncertainty, but to make better
decisions. 

( )p x

( )|p x y



Decision analysis

( )1,..., Na a=a

( )1,..., nx x=x

( ),v x a

• Uncertain reservoir variables:

• Infill drilling alternatives (Where? How?)

• Value function is revenues of production, subtracted costs.

• Risk neutral decision maker will maximize expected value:

( ){ } ( ) ( )max ( , ) ( , ) ( , ),E EPV v v v pÎ= =åa
x

A x a x a x a x



Illustration of values

Conduct infill drilling? 
- Decision is difficult because of uncertainty
in reservoir properties, and hence in values.

Infill drilling (Alternative 1, blue) can give
more value, but can also mean loss.

( ),v x a



Illustration of values and data influence

Infill drilling (Alternative 1) can give
more value, but can also mean loss.

Data indicating reservoir variables 
corresponding to these high values
-> do infill drilling!Data indicating reservoir variables 

corresponding to these small values
-> avoid infill drilling!

… such data would lead to better decisions in this situation.



Value of information (VOI)

( ){ }max ( , )PV vEÎ= a A x a

Prior value:

Posterior value:

( ) ( )VOI PoV PV= -y y

x

a

- Uncertainties

- Alternatives

y - Data

( ),v x a - Value function

VOI =   Expected posterior value – Prior value

( ) ( )( ){ } ( )max , |PoV E v p dÎ= ò a Ay x a y y y



.

• Is VOI larger than price of time-lapse seismic experiment?

• Is VOI larger for seismic acquisition design A or B ?

• Is VOI larger for seismic processing type I or II ?

Information gathering and VOI

VOI is interpretable as follows:



( ){ } ( )max ( , ) max ( , )P v p dEV vÎ Î

ì üï ï= = í ý
ï ïî þ
òa A a A
x

x a x a x x

Computation - Formula for VOI

( ) ( )( ){ } ( )max , |PoV E v p dÎ= ò a Ay x a y y y

Main challenge.



Approximate computation

( ) ( )VOI PoV PV= -y y

• Suggest Monte Carlo (outer) and regression approximation (inner). 

Inner expectation: |x y

Outer expectation: y

( ) ( )( ){ } ( )max , |PoV E v p dÎ= ò a Ay x a y y y



Simulation-regression illustration

xa

y( ),v x a

Build regression model from Monte Carlo samples.

Sample variables from prior.

Sample data from likelihood.

Set alternatives.

Evaluate value function.



Simulation-regression algorithm

Inner expectation

Outer expectation

1. Simulate uncertainties:

2. Compute values, for all alternatives:

3. Simulate data:

4. Regress samples to fit conditional mean:  

( ) , 1,...,b p b B~ =x x

( ), 1,..., , ,b b bv Bv = Î=a x a a A

( )~ , 1,...,b bp b B=y y | x

( )ˆ
aE v | y

( ) ( ){ }
1

1 ˆmax |
B

b

b
PoV E v

B Î
=

» å a A ay y

( ) ( )( ){ } ( )max , |PoV E v p dÎ= ò a Ay x a y y y



Illustration - fit regression model to samples
( ),v x a

y



Illustration - fit regression model to samples

( )( ,a = 2)vE x

( )( ,a =1)vE x

( )( ,a = 2) | 1E v y =x

( )( ,a =1| 1)E v y =x

( )( ,a = 2) | 2E v y = -x

( )( ,a =1| 2)v yE = -x

y

( ),v x a



.

Choice of regression method

• Linear regression
• Principal component regression
• Partial Least squares
• Neural networks
• K-nearest neighbors
• Random forest
• and many others

• Cross-validation to check model fit, look at residuals, etc.



Gullfaks case (infill drilling and time lapse)

Time-lapse seismic has shown useful at 
Gullfaks. But no formal VOI analysis was
conducted up-front.

We consider this case in retrospect.

Well data

Geological
knowledge

time

Production

Time lapse 
seismic

Baseline 
seismic

Infill drilling

5 decision alternatives.



Prior - Reservoir uncertainty

This distribution of reservoir
variables is represented by multiple 
Monte Carlo realizations from the
prior distribution. 

Sample 1

Sample 1000………….

( )p xPrior is            .

Uncertainties: saturation, pressure, porosity, permeability and fault
transmissibilities.  (Conditioned on existing data.) 



Gullfaks case (values)

Future production for 5 different infill drilling alternatives.
- for each realization, all alternatives are «produced».



Gullfaks case (likelihood of AI data)

Synthetic time-lapse seismic ( acoustic impedance (AI) proessing):
Use rock physics relations connecting reservoir properties to AI.

Simulations indicate some information about saturation from AI for this case. 



Gullfaks case (likelihood of R0,G data)

Synthetic time-lapse seismic (processing more angle information (R0,G)):
Use rock physics relations.

Simulations indicate limited information about saturation from (R0, G). 



Simulation-regression illustration

xa

y( ),v x a

Build regression model from Monte Carlo samples.

Sample reservoir variables.

Sample data from likelihood.

Set alternatives.

Evaluate value function.



Gullfaks case (PLS for expected values)

• Partial least squares (PLS) is used for regressing values on large
seismic data set.

• Cross-validation to find optimal number of linear combinations. 
• PLS is similar to Principle component regression (PCR).

(PLS focuses on explaining covariance instead of variance.) 



Gullfaks case (predictive power) 

Fit of PLS regression is reasonable (based on AI data here). 



Gullfaks case (VOI results)

Acoustic impedance (AI) Angle information, (R0,G)

VOI of time-lapse data is about $50 million. 
No big differences in VOI of processing methods
(but the price of these likely differ). 

(Bootstrap used to get distribution.)



Smeaheia case

Injected CO2 can leak. When is the best time to conduct seismic
time lapse monitoring.



Geostatistics and reservoir simulations



Simulations under leak / seal

Using MRST /CO2lab, 
10000 realizations.



Seismic data

Fitted Gaussian likelihoods. Not always easy to discriminate a little or high CO2 saturation. 



Value function

Value function is 
associated with stop 
or continue injecting 
alternatives, and 
leak or seal 
outcomes. 

Different machine 
learning approaches are 
used to estimate the 
conditional leak / seal 
probabilities. 



VOI results



Closing remarks
• VOI to determine what are useful data gathering plans. 

Here time-lapse seismic data

• Frame decision situation - alternatives and uncertainties. 
Here infill drilling plans or stop / continue injection. 

• Computationally difficult – approach requires approximations.
Simulation-regression : i) generate realizations of values and data, 

ii) fit conditional expectation of values.

Future : Continuous monitoring. (Johan Sverdrup field – digitalization)
When/where/how is it most valuable to process data.

Artificial Intelligence, Internet of Things, Active Learning : 
All tied to smart decisions and efficient ways of gathering or processing data. 
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