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Abstract

With an increasing demand for hydrocarbon reservoir produces such as oil, etc.,
and difficulties in finding green oil fields, the use of Enhanced Oil Recovery (EOR)
methods such as polymer, Smart water, and solvent flooding for further develop-
ment of existing fields can not be overemphasized. For reservoir profitability and
reduced environmental impact, it is crucial to consider appropriate well control
settings of EOR methods for given reservoir characterization. Moreover, finding
appropriate well settings requires solving a constrained optimization problem with
suitable numerical solution methods. Conventionally, the solution method requires
many iterations involving several computationally demanding function evaluations
before convergence to the appropriate near optimum. The major subject of this
thesis is to develop an efficient and accurate solution method for constrained op-
timization problems associated with EOR methods for their value quantifications
and ranking in the face of reservoir uncertainties.

The first contribution of the thesis develops a solution method based on the inexact
line search method (with Ensemble Based Optimization (EnOpt) for approximate
gradient computation) for robust constrained optimization problems associated
with polymer, Smart water, and solvent flooding. Here, the objective function is
the expectation of the Net Present Value (NPV) function over given geological
realizations. For a given set of well settings, the NPV function is defined based
on the EOR simulation model, which follows from an appropriate extension of
the black-oil model. The developed solution method is used to find the economic
benefits and also the ranking of EOR methods for different oil reservoirs developed
to mimic North Sea reservoirs.

Performing the entire optimization routine in a transformed domain along with
truncations has been a common practice for handling simple linear constraints in
reservoir optimization. Aside from the fact that this method has a negative impact
on the quality of gradient computation, it is complicated to use for non-linear
constraints. The second contribution of this thesis proposes a technique based on
the exterior penalty method for handling general linear and non-linear constraints
in reservoir optimization problems to improve gradient computation quality by the
EnOpt method for efficient and improved optimization algorithm.

Because of the computationally expensive NPV function due to the costly reser-

v



voir simulation of EOR methods, the solution method for the underlying EOR
optimization problem becomes inefficient, especially for large reservoir problems.
To speedup the overall computation of the solution method, this thesis introduces a
novel full order model (FOM)-based certified adaptive machine learning optimiza-
tion procedures to locally approximate the expensive NPV function. A supervised
feedforward deep neural network (DNN) algorithm is employed to locally create
surrogate model. In the FOM-based optimization algorithm of this study, several
FOM NPV function evaluations are required by the EnOpt method to approxi-
mate the gradient function at each (outer) iteration until convergence. To limit the
number FOM-based evaluations, we consider building surrogate models locally to
replace the FOM based NPV function at each outer iteration and proceed with an
inner optimization routine until convergence. We adapt the surrogate model using
some FOM-based criterion where necessary until convergence. The demonstration
of methodology for polymer optimization problem on a benchmark model results
in an improved optimum and found to be more efficient compared to using the
full order model optimization procedures.
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Introduction

1 Introduction

1.1 Petroleum production optimization

To meet the continuous increase in the world energy demand resulting from the
rise in world population and the quest for a high standard of living, the need to
utilize traditional energy resources such as petroleum (or simply oil) and natural
gas will continue. The dependence becomes more pronounced, especially in
developing countries where infrastructures for alternative sources of energy such
as solar, wind, etc., are not easily accessible due to high cost and implementation
resources in the near future. Petroleum is a finite energy resource embedded
in an interconnected network of porous rock formations called the petroleum
reservoir.

In practice, the oil is recovered from reservoirs by different methods based on
reservoir complexities, e.g., the conventional water flooding method, where water
is injected into the reservoir to improve driving force, see, Figure 1.1. However,
with the conventional oil recovery method, studies have shown that the volume of
residual oil is still very high after production cessation. For instance, see Figure
1.2, which summarizes the results of studies conducted on 29 large oil reservoirs
on the Norwegian Continental Shelf (NCS) indicating a sizable percentage of the
Original Oil in Place (OOIP) as leftover. Practically, the high leftover can be due
to several factors such as limited technical capability, oil recovery method incom-
patibility with reservoir type, and/ or ineffective production process. Furthermore,
as the number of newly discovered green reservoir fields declines while the en-
ergy demand increases, many advanced recovery technologies such as the EOR
methods are developed to improve the performance of conventional oil recovery
methods.

Many research including Fonseca et al. (2017); Jansen (2011b); Kraaijevanger
et al. (2007); Wang et al. (2010); Li-xin and Jian-jun (2005), and Liu and
Reynolds (2014) extensively studied the actual reservoir profitability (in terms
of NPV, Oil Recovery Factor (ORF), etc.) with the conventional oil recovery
method using numerical optimization and time-consuming reservoir model sim-
ulation. However with the EOR methods, little work has been done in finding
the actual economic benefit for field applications under reservoir uncertainties. In
this case, the selection of an optimally and appropriate EOR strategy based on
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Figure 1.1: Schematic diagram of a quarter of five oil reservoir development using
water flooding (Baker, 1998).

reservoir characteristics has not been fully examined. In a petroleum development
plan, the problem of reservoir profitability is usually formulated as a constrained
optimization (petroleum production optimization) problem. The solution meth-
ods coupled with the inefficient reservoir simulation often used for this class of
constrained problem give rise to inefficient and less accurate economic prediction
techniques. Therefore, solutions to these prevailing problems are researched in
this Ph.D. project.

1.2 Motivation

Water flooding remains the most economically utilized secondary oil recovery
method after the primary depletion of the reservoir (Ogbeiwi et al., 2018). How-
ever, the method is faced with many setbacks, specifically when utilized in medium
to highly heterogeneous or unfavorable mobility reservoirs. One such setback is
early water breakthrough which leaves behind about 65% of unswept oil in the
rock formation (Lyons, 2009; Svein and Kleppe, 1992). It is because of different
hindrances (based on the petrophysical properties of the oil reservoir) to residual
oil flow. Some of which include the high viscosity of residual oil causing unfa-
vorable mobility ratio, high level of heterogeneity (in porosity and permeability),
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Figure 1.2: Oil produced and residual profiles of 29 reservoir fields on the NCS
(Norwegian-Petroleum-Directorate, 2019).

and high interfacial tension between reservoir fluids causing the high capillary
forces holding down the oil in the capillary pores of the reservoir (Niu et al.,
2020).

The EOR methods are developed to mitigate the effects of hindering factors
associated with fluid and rock properties on oil flow in the reservoir by improving
the performance of water flooding. The methods involve injecting EOR gas (like
CO2, etc.) or chemical (like polymer, Smart water, etc.) into the reservoir,
causing favorable changes to mobility ratio of oil-water system (Xiangguo et al.,
2021), rock wettability (Fani et al., 2018), microscopic sweep efficiency (Sehbi
et al., 2001), etc., in other to produce more oil. But, because EOR methods are
associated with high chemical or gas cost, and also injecting more than necessary
into the field can lead to an insignificant increase in oil production, it is imperative
to optimize their control strategies for field applications.

Several techniques have been used to find the optimal and low-cost injection
strategies for these EOR methods (mostly at laboratory scale) and utilized with
different reservoir fields. In this case, the numerical experiment performed mostly
involves a single geological reservoir model (Dudek et al., 2021; Xu et al., 2018;
Sadeed et al., 2018; Mehos and Ramirez, 1989; Van Doren et al., 2011). In this

3



Introduction

experiment, one assumption is accurate measurement of reservoir petrophysical
properties, which are in theory uncertain. Examples of such uncertain parameters
are porosity, permeability, fault transmissibilities, etc. Their inaccurate measure-
ments are due to limited reservoir observations and the complex nature of the
subsurface flow. The main work of data assimilation (Jung et al., 2018; Nævdal
et al., 2006), a compartment in the closed-loop reservoir management, revolves
around finding suitable estimates for these parameters.

The closed-loop framework (see Figure 1.3) refers to a process that combines
model-based optimization and computer-assisted history matching or data assim-
ilation (see Jansen et al. (2009) for detailed description). It is known to be the
most effective way to exploit limited oil reserves more efficiently and economically
(Hou et al., 2015). In Figure 1.3, the reservoir, wells, and facilities constitute the
physical system (virtual asset) in the closed-loop framework. The system mod-
els are realizations of a prior distribution for the physical system, and each may
include the static (geological), dynamic, and wellbore flow models. Because it
is not possible to accurately quantify the physical system parameters, the system
models are known to contain uncertain parameters. Therefore, the reason for the
arrows called “Noise”, which simply means the input (well control) data (on the
left) and the predicted or simulated data (called “Output”) contain some errors.
The sensors help to keep track and get information (like production data) about
the processes in the system. The red loop at the bottom is called the data assimi-
lation process, while the blue loop on the left is called the model-based reservoir
optimization.

In reservoir management, the uncertain parameters are quantified by selecting an
ensemble of geological realizations of the reservoir of interest. Therefore, knowing
that the effects of any EOR methods depend mainly on the reservoir petrophysical
properties, it is valuable to consider reservoir uncertainty descriptions for their
accurate economic predictions. Therein, one considers optimizing the expectation
of a given reservoir performance over all the given geological realizations. It
is often called robust optimization. The need to determine the actual benefit of
optimal EOR strategies and their ranking with respect to water flooding in the
face of geological uncertainty is one reason for this study.

Conventionally, the process of finding the best injection strategy for an oil recovery
method (e.g., polymer flooding) in the development of a given reservoir is done by
manually selecting a set of upscaled injection strategies based on experiment and
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Figure 1.3: Elements of closed-loop reservoir management (Jansen et al., 2009).

then applying each strategy to the reservoir model to evaluate its economic benefit
or profitability, see, e.g., Alfazazi et al. (2019). It is time-consuming and usually
automated by formulating the process as a constrained optimization problem. In
the reservoir engineering community, this is called production optimization.

The commonly used solution method for this problem is the EnOpt method be-
cause it takes into account the uncertainty description in the reservoir (Chen
et al., 2009; Chen and Oliver, 2010). However, the current constraint handling
techniques utilized with this method possess additional uncertainty in the opti-
mization result. In the case of bound constraints, it is common to use linear
or logarithmic projection such as in (Li and Reynolds, 2011; Chen et al., 2009;
Do and Reynolds, 2013) to enforce these constraints on the unknown variables at
each optimization iteration. This technique is not easily applicable for complicated
non-linear constraints, and it can affect solution method accuracy and efficiency
due to the impact on gradient quality. Therefore, it is crucial to seek an improved
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methodology to deal with constraints when applying the EnOpt method for this
class of constrained problems to ensure improved performance of the solution
method.

In reservoir production optimization for EOR methods, the objective function
(or the input-output map) to optimize is usually some reservoir performance
measure (such as the NPV function) defined on a given set of controllable EOR
variables (such as the water rate, EOR gas rate or chemical concentration of each
injecting well at each control time step, etc.) through reservoir simulation (Lee
and Aronofsky, 1958; Van Doren et al., 2011; Lei et al., 2012; Dudek et al.,
2021). Reservoir simulation for a given EOR method is a dynamic process that
predicts the future performance (in terms of oil production, water cut, etc.) of
an oil reservoir with the EOR flooding. It involves solving a coupled system
of complex time-dependent non-linear partial differential equations describing the
behavior EOR gas or chemical flow in the actual oil reservoir on a given grid
system (Rasmussen et al., 2021; Bao et al., 2017; Schlumberger, 2010). Grid
block sizes in a reservoir simulation model are usually in the order of tens to
hundreds of meters in the directions perpendicular to the geological layers, and
the model may contain tens of thousands up to millions of grid blocks. Typical
simulation time steps are in the other of weeks to months, and a single reservoir
simulation over the producing life span of an actual field takes hours to days
of runtime (Jansen et al., 2008). In the case of a large oil reservoir field, this
simulation requires a lot of computation effort to complete.

Each evaluation of the objective function at a given set of EOR control vari-
ables requires performing a complete reservoir simulation. In practice, a better
approximation of the objective function gradient at a given EOR control vector
by the EnOpt method requires at least 100 different reservoir simulations at each
optimization iteration. It makes the solution method very inefficient to use for
field applications. Majorly for water flooding modeling, several works have been
done to reduce the cost of reservoir simulation. In this case, the general idea
involves building a surrogate model for the reservoir simulation using Reduced
Order Model (ROM) techniques (Cardoso and Durlofsky, 2010; Van Doren et al.,
2006; Sun and Xu, 2017; Durlofsky, 2010). Although this method proves to be
modest computation-wise and produces accurate results, it is hard to use with
commercial reservoir simulators because its numerical implementation requires
access to the discretized underlying mathematical flow equations. It means they
are intrusive. Moreover, since most ROM techniques are formulated using proper
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orthogonal decomposition (POD) and/ or Galerkin methods, they tend to suffer
from non-linear inefficiency and instability issues (Walton et al., 2013; Schlegel
and Noack, 2015).

Because of above mentioned reasons, many researches have sought non-intrusive
alternatives like machine learning (ML) based ROM techniques (Yang and Wang,
2021; Zhong et al., 2020; Shirangi, 2012; Milk et al., 2016). Here, no complicated
calculations with the underlying flow physics are required and, by practice, proven
to provide good approximating models. However, most of these ML methodolo-
gies depend heavily on the hyper-parameter values and quality of the training data.
Tuning of hyper-parameters for the sake of finding a good model approximation
can be time-consuming. One way to solve this problem is by incorporating a good
certifying technique for the ML algorithm.

Also, approximating the full reservoir simulator using non-intrusive methods re-
quires large data set of different features quantifying reservoir states in each grid
block and geological properties. There is a possibility to treat the reservoir model
completely as a black-box and only consider to approximate the input-output objec-
tive function. The aim to find a suitable and certified technology that adaptively
approximates the computationally demanding input-output map when using the
EnOpt method for EOR optimization problems to have an efficient and desirable
accurate decision-making tool is the final motivation for this study.

1.3 Research objectives

The main goal of this PhD project is to develop a robust, accurate, and efficient
optimal solution method for constrained production optimization problems associ-
ated with the commonly utilized EOR methods for field applications and evaluate
actual economic benefits of EOR strategies relative to the traditional oil recovery
method (i.e., water flooding). This study achieves its goal by the following three
objectives;

• Develop methodology and tools to allow for mathematically well founded
optimization and quantification of EOR methods such as polymer, Smart
water and CO2 for relevant North-Sea cases. Hence, on a large scale, pro-
vides an extensive and improved understanding towards evaluating reservoir
performance for EOR models.
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• Develop and implement an efficient and accurate constrained-handling tech-
nique for ensemble-based solution methods used for robust constrained (lin-
ear or non-linear) reservoir production optimization problems.

• Develop a non-intrusive, efficient, and certified ROM techniques for the
computationally expensive objective function (NPV) in the EOR optimiza-
tion problem and evaluate improvements in the computational speed and
NPV approximation respectively.

1.4 Main contributions

In the course of researching solutions to the identified impending problems faced
with during reservoir management, and based on the outlined research objectives
mentioned above, several papers are published. The research results therein are
summarized as follows:

Paper 1: On the Robust Value Quantification of Polymer EOR Injection Strate-
gies for Better Decision Making. This paper presents mathematical tools for
optimizing and quantifying the value (with respect to the conventional oil recov-
ery method) of polymer EOR control strategies. The developed methodology is
demonstrated with synthetic oil reservoirs with different characterizations. The
purpose of the work is to improve the understanding of the actual benefit of
polymer flooding and to provide a methodology that quickly allows users to find
optimal injection and production strategies that maximize the annually discounted
economic values of the injected and production data, the NPV. The polymer con-
trol prediction problem is formulated as a constrained optimization problem and
the unknowns include polymer concentration, water, oil rates or bottom hole pres-
sures. To account for the uncertainty in the reservoir, an ensemble of geological
realizations is used. An EnOpt method with covariance adaptation is utilized to
solve the optimization problem. Important findings of this study are the feasible
control strategies for polymer EOR methods leading to an increased NPV, and
the observed difference of the economic values for polymer and traditional water
flooding for the examples considered.

Paper 2: Ensemble-based Constrained Optimization Using Exterior Penalty
Method. This paper proposes a new efficient, robust, and accurate optimal so-
lution strategy based on the Exterior Penalty Function (EPF) method and the
adaptive EnOpt approach (with backtracking line-search technique) for non-linear
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constrained optimization problems. This work provides a better user-friendly strat-
egy which mitigates the problem often faced with the current constraints handling
technique utilized when using the EnOpt method to solve constrained problems
of water or EOR flooding. It is noted that the problem contributes to uncertain-
ties in the gradient computation of the objective function and hence leads to the
poor convergence rate of the standard acenopt method. Here, the EPF method
is used to transform a given constrained optimization problem to a sequence
of unconstrained subproblems and then sequentially solve the subproblems by
unconstrained EnOpt procedure until convergence to the solution of the original
problem. The demonstration of proposed methodology with analytical constrained
problem and practical high dimensional bound constrained water flooding opti-
mization problem associated with a 2D and a 3D reservoir fields show a fast
convergence and more accurate results than traditional method.

Paper 3: Robust Value Quantification of EOR Injection Strategies. This paper
evaluates the economic benefits and environmental impacts of the optimal control
strategies for the commonly utilized EOR methods such as polymer, Smart water,
and CO2 flooding compared to the conventional oil recovery method. Knowing
that the aceor effects of the recovery methods are sensitive to fluid and rock
properties in the reservoirs, for appropriate prediction, the uncertainties in the
reservoirs are considered by using an ensemble of geological realizations obtained
by engineering upscaling of the initial model. In the optimization problems, the
unknowns are EOR gas rate or chemical concentration, water rates, oil rate, or
bottom hole pressures. Also, the effect of different injection costs of CO2 on the
optimization results of CO2 EOR method is investigated.

Paper 4: Adaptive machine learning based surrogate modeling to accelerate
PDE-constrained optimization for enhanced oil recovery. This paper proposes
a novel certified machine-learning-based ROM method for different versions of
the input-output objective function in EOR optimization problems and surro-
gate model adaptation technique during the optimization procedures. This work
demonstrates that the computational cost of reservoir simulations required dur-
ing optimization renders the traditional method like the EnOpt for solving the
optimization problems very inefficient in making decision. To reduce this compu-
tational effort without compromising solution accuracy, we propose to approximate
the non-linear objective function, which depends heavily on reservoir simulation
using feedforward deep neural networks. The ROM method, combined with the
EnOpt method is used to solve a polymer flooding optimization problem on a
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5Spot field. In this problem, we aim to find the best control strategy, including
polymer concentration and water rates for the injection wells and oil rates for
the production wells over the reservoir production lifespan that gives maximum
net present value as fast as possible. The proposed method is found to be more
efficient, and it gives an improved solution to the polymer optimization problem
than the traditional solution method.

1.4.1 Study outlined

This study provides a detailed introduction based on scientific background of the
key subject matter to better understand the scientific results in the above-mentioned
papers. It is subdivided into two parts, namely Part I; the scientific background
and Part II; the scientific contributions of study.

The rest of Part I is arranged as follows; Chapter 2 demonstrates the physical
interpretation and mathematical formulation of the black-oil model and its exten-
sions describing polymer, Smart water, and CO2 EOR flooding for appropriate
NPV formulation. Based on the results in Chapter 2, the general constrained
optimization problem associated with EOR methods is presented in Chapter 3.
Chapter 4 looks at the general procedures suitable for approximating the gradient
of the EOR NPV function for deterministic and robust settings and, also, the
solution method to solve the underlying constrained EOR optimization problem.
Chapter 5 illustrates the application of model order reduction techniques in reser-
voir optimization problems and Chapter 6 draws a general conclusion from the
studies.

Part II presents the scientific contributions and results of this PhD study in the
form of published papers.
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2 EOR modeling and open porous media

This study considers optimizing the field development of oil reservoirs of interest
with three EOR methods, namely, polymer, Smart water, and CO2 or solvent
flooding. For convenience, polymer and Smart water are grouped as chemical
EOR methods and CO2 as a gas EOR method. The optimization process involves
an objective function defined based on some controllable variables. In this study,
the NPV function is considered as the objective. It quantifies the economic value
of the injected and produced fluids over a given period of time in the reservoir. To
every fluid injected into the reservoir, there is a need to appropriately measure the
reservoir response (or performance) in terms of the produced fluids which depends
on state of the reservoir at a point. An important technique for predicting reservoir
performance under a given operating condition is the reservoir simulation. For
the formulation of EOR optimization problems, the mathematical models for
simulating the recovery effect of the EOR methods of interest are first described.
The EOR models, which are extensions of the most widely used black-oil model
for fluid flow simulation in oil reservoirs are utilized in this study.

2.1 Black-oil model

The black-oil model consists of a set of partial differential equations (PDEs)
governing the simultaneous flow behavior of two or three different phases, namely,
water (aqueous), oil (oleic), and gas (gaseous) phases and pseudo components,
namely, water, oil, and gas in an hydrocarbon reservoir. The term “black-oil”
is due to the assumption that all the hydrocarbon species can co-exit as gas and
oil with constant chemical composition at surface conditions. There is no mass
transfer between the fluid components but mixing is possible. That is, both oil and
gas can partially or completely dissolve in each other to form, depending on the
pressure, a oleic or gaseous phase at reservoir conditions (Bao et al., 2017).

The model equations are formulated from conservation of mass for each com-
ponent coupled with suitable closure relations, initial, and boundary conditions.
Let Ω ⊂ R3 be the spatial domain of a reservoir with boundary 𝜕Ω ⊂ R3 and
𝑇 = {𝑡 ∈ R : 𝑡 ≥ 0} be the time domain with boundary 𝜕𝑇 = {𝑡 ∈ R : 𝑡 = 0}.
For simplicity, quantities associated with the aqueous, oleic, and gaseous phases
are identified with subscripts, 𝑤, 𝑜, and 𝑔 respectively. Let 𝐴𝛼 := 𝐴𝛼 (s, 𝑡) be
the 𝛼 phase accumulation as function of position s := (𝑠1, 𝑠2, 𝑠3) ∈ Ω and time
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𝑡 ∈ 𝑇.

2.1.1 Balance equation

For fluid phase (or pseudo-component) 𝛼 ∈ {𝑤, 𝑜, 𝑔}, the conservation of mass
(or balance) equation is given by (note that in this chapter, bold small and capital
letters indicate vector and tensor quantity respectively):

𝜕

𝜕𝑡
(𝜙𝜌𝛼𝐴𝛼) + ∇ · (𝜌𝛼𝜏𝜏𝜏𝛼) = 𝑄𝛼, s ∈ Ω ∩ 𝜕Ω𝑐, 𝑡 ∈ 𝑇 ∩ 𝜕𝑇 𝑐 (2.1)

(superscript 𝑐 indicates set complement). In this case, 𝜏𝜏𝜏𝛼 = 𝜏𝜏𝜏𝛼 (s, 𝑡) is the 𝛼−phase
surface volume flux through the porous medium. It is a 3-dimensional vector,
which describes the phase flow along each spatial coordinate axis. The quantity
𝑄𝛼 = 𝑄𝛼 (s, 𝑡) denotes the source/sink term for the 𝛼−phase. It models the flow
of the phase from the injection wells into the reservoir and flow to the production
wells (see Appendix A.1 and Paper IV for example of well model). 𝜙 denotes
the porosity of the reservoir rock formation. The porosity is the volumetric
fraction of the reservoir rock that is void space. The quantity 𝜌𝛼 is the density of
𝛼−phase.

2.1.2 Constitutive equations

The equations for modeling reservoir fluid and rock parameters in the balance
equation given by (2.1) are presented as follows.

The accumulation term for each 𝛼−phase is given respectively by:

𝐴𝑤 = 𝑏𝑤𝑆𝑤, (2.2)
𝐴𝑜 = 𝑏𝑜𝑆𝑜 + 𝑟𝑜𝑔𝑏𝑔𝑆𝑔, (2.3)
𝐴𝑔 = 𝑏𝑔𝑆𝑔 + 𝑟𝑔𝑜𝑏𝑜𝑆𝑜, (2.4)

where 𝑏𝛼 is the inverse of volume formation factor of alpha phase. The volume
formation factor describes the ratio of volume (at reservoir condition) of a phase
to the volume (at surface condition) of the phase. 𝑆𝛼 = 𝑆𝛼 (s, 𝑡) is the saturation
of the 𝛼−phase. It measures the fraction of pore space that the 𝛼−phase occupies.
For three phase flow of oil, water, and gas, the sum of their saturations gives 1.
This implies that the three phases jointly occupy the pore spaces.
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In this regards, the surface volume fluxes of the three phases are computed
by

𝜏𝜏𝜏𝑤 = 𝑏𝑤v𝑤, (2.5)
𝜏𝜏𝜏𝑜 = 𝑏𝑜v𝑜 + 𝑟𝑜𝑔𝑏𝑔v𝑔, (2.6)
𝜏𝜏𝜏𝑔 = 𝑏𝑔v𝑔 + 𝑟𝑔𝑜𝑏𝑜v𝑜, (2.7)

where 𝑟𝑔𝑜 measures the volume of gas (measured at standard conditions) dissolved
at a given reservoir pressure and temperature in a unit volume of oil. Similarly,
𝑟𝑜𝑔 denotes the volume of oil dissolved in a unit volume of gas. The quantity
v𝛼 = v𝛼 (s, 𝑡) denotes the velocity at which the 𝛼−phase flows through the porous
medium and is modeled by Darcy’s law as

v𝛼 = − 𝑘𝑟𝛼

𝜇𝛼
K(∇𝑝𝛼 − 𝜌𝛼a∇𝑠3). (2.8)

Here, 𝑝𝛼, 𝑘𝑟𝛼, and 𝜇𝛼 denote the pressure (and ∇𝑝𝛼 is the pressure gradient),
relative permeability1, and viscosity2 of phase 𝛼 respectively. Furthermore, a is
the gravitational acceleration vector, K is the permeability3 tensor of the porous
medium, and ∇𝑠3 is the change in the 𝑠3−direction.

Reservoir parameter modeling

Good understanding of the mathematical formulations regarding quantities involv-
ing reservoir rock, fluid, and rock-fluid interaction properties for the black-oil
model considered in this study is documented in (Chen, 2007). The reservoir
rock properties of interest measuring the capacity of reservoir rock to transmit
and store fluids in its pores include porosity and permeability.

Fluid properties of interest including densities, viscosities, formation volume fac-
tors, gas solubility factor, etc., are assumed to depend on phase pressure and
rock-fluid interaction properties. The rock-fluid interaction property such as cap-
illary pressures and relative permeabilities depend on phase saturation.

1The relative permeability of a phase measures the amount of impairment to flow of the phase
on another. In two-phase flow, it depends on the phase saturation; in three-phase flow, each phase
relative permeability can depend on more than one phase saturation.

2The viscosity of a phase measures the internal resistance force per unit surface area due to an
applied shearing force in the opposite direction of the phase flow.

3The rock permeability measures the capacity of the rock to conduct fluids through its intercon-
nected pores.
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2.1.3 Reservoir state variables

Combining Equations (2.1) - (2.8) leads to a system of PDEs with primary state
variables (unknowns), 𝑝𝑜, 𝑝𝑤, 𝑝𝑔, 𝑆𝑜, 𝑆𝑔, and 𝑆𝑤 . They are called state variables
because they change with time. In the case of non-miscible flow (such as in
water flooding, etc), the resulting coupled PDEs primary unknowns are reduced
to, 𝑝𝑜, 𝑆𝑤, and 𝑆𝑔 using the following closure properties:

𝑆𝑤 + 𝑆𝑜 + 𝑆𝑔 = 1, (2.9)
𝑝𝑐,𝑜𝑤 (𝑆𝑤) = 𝑝𝑜 − 𝑝𝑤, (2.10)
𝑝𝑐,𝑜𝑔 (𝑆𝑔) = 𝑝𝑜 − 𝑝𝑔, (2.11)
𝑝𝑐,𝑔𝑤 (𝑆𝑤) = 𝑝𝑔 − 𝑝𝑤 = 𝑝𝑐,𝑜𝑤 (𝑆𝑤) + 𝑝𝑐,𝑜𝑔 (𝑆𝑔), (2.12)

and appropriate state equations 4. Here, 𝑝𝑐,𝑜𝑤 , 𝑝𝑐,𝑜𝑤, and 𝑝𝑐,𝑔𝑤 denote oil-water,
oil-gas, and gas-water saturation dependent capillary pressures5 respectively. In
the rest of this study, the state vector at a given time 𝑡 will be denoted as
x(𝑡).

In the miscible flow context (like solvent flooding), the set of primary unknowns is
different because the gaseous phase vanishes when all the gas completely dissolves
into the oleic phase. Likewise, the oleic phase could disappear when oil vaporizes
into the gaseous phase. Therefore, using 𝑆𝑔 as the third primary variable is not
suitable. In this regards, the third unknown is defined to keep track of the phase
composition present locally in each grid cell. In this case, when all the three
phases are present, it is 𝑆𝑔, when no gaseous phase is present, it is 𝑟𝑔𝑜, and if no
oleic phase is present, it is 𝑟𝑜𝑔 .

2.1.4 Initial and boundary conditions

Additional data, the initial and boundary conditions are imposed on the resulting
coupled PDEs (from (2.1) - (2.12)) to give a complete approximately solvable
black-oil model. In general, the initial 𝛼−phase accumulation in the reservoir is

4State equations are thermodynamic equations relating state variables, which describe the state
of matter under a given set of physical conditions, such as pressure, volume, temperature, or internal
energy, e.g., 𝑐𝑜 = 1

𝜌𝑜

𝜕𝜌𝑜
𝜕𝑝𝑜

|𝑇 . Here, 𝑐𝑜 is the oil compressibility factor at constant temperature 𝑇

(Neumann et al., 2010).
5In two-phase flow, a discontinuity in pressure occurs across an interface between any two

immiscible fluids due to the presence of interfacial tension. This discontinuity in pressure is called
capillary pressure.
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expressed as

𝐴𝛼 (s, 𝑡) = 𝐴𝛼 (s), s ∈ Ω, 𝑡 ∈ 𝜕𝑇. (2.13)

Since each accumulation term is a function of the state variables, specificially, the
initial data can be prescribed directly for the unknown state vector x = [𝑝𝑜, 𝑆𝑤, 𝑥3],
with

𝑥3 =


𝑆𝑔, oleic, gaseous, and aqueous phases present
𝑟𝑔𝑜, no gaseous phase
𝑟𝑜𝑔, no oleic phase

. (2.14)

For example, the hydrostatic pressure and fluid distribution data can be given as
initial conditions. The boundary condition usually involves data specifying no
fluid interchange with the surrounding reservoir rock formation, that’s

𝜏𝜏𝜏𝛼 (s, 𝑡) = 0, s ∈ 𝜕Ω, 𝑡 ∈ 𝑇, (2.15)

except through the well models (no-flow Neumann conditions). Other approaches
of specifying the initial and boundary data can be found in (Rasmussen et al.,
2021). This gives a closed system of PDEs called the black-oil model equations
(BOMEs).

2.1.5 Numerical solution of BOMEs

The solution strategy starts with suitable discretization toolbox to appropriately
discretize the differentials in BOMEs simultaneously with respect to space and
time, and the resulting system of non-linear equations are solved using suitable
non-linear or linear (coupled with linearization technique) solver.

In this study, the BOMEs are discretized in space into a suitable number of
grid blocks using two point flux approximation (TPFA) with upstream-mobility
weighting (UMW) to give a set of ordinary differential equations (ODEs)

g(u, ¤x, x, 𝜃𝜃𝜃) = 0. (2.16)

Here, g is a non-linear vector-valued function representing the black-oil simulator,
u is an arbitrary input vector of well controls such as well flow rates (or outflux
density), well bore pressure (either in the reservoir or at the surface), valve settings
in the gridblock penetrated by wells, etc., x is the state vector, and ¤x is the first
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derivative of the state vector components with time, and 𝜃𝜃𝜃 is a reservoir model
parameter vector containing parameters such as porosities, permeabilities, and
other static reservoir or fluid properties.

On the application of first-order fully implicit temporal discretization (FOFITD),
the ODEs (2.16) gives a system of non-linear discrete-time equations

g𝑖+1(u𝑖+1, x𝑖+1, x𝑖, 𝜃𝜃𝜃) = 0, 𝑖 = 0, 1, 2, ..., 𝑁𝑡 − 1, (2.17)
x0 = x0 (2.18)

where the subscript 𝑖 denotes time step index and 𝑁𝑡 is the simulation time. In
Equation (2.17), x𝑖 is the shorthand for x(𝑡𝑖) and it implies the state vector value
at time 𝑡 = 𝑡𝑖 . Further, x0 is the prescribed initial data. At each time step, the
system (2.17) - (2.18) is solved iteratively using Newton-Raphson (NR) method
given by

x𝑖+1,𝑛+1 = x𝑖+1,𝑛 − F𝑖+1,𝑛 [F′
𝑖+1,𝑛]

−1. (2.19)

Here, 𝑛 = 0, 1, ..., is the NR iteration index, F𝑖+1,𝑛 and F′
𝑖+1,𝑛 denote the value

and Jacobian of g𝑖+1 at x𝑖+1 in the 𝑛−th NR-iteration respectively. The process
continues until (2.17) satisfies a prescribed convergence criteria such as

| |g| | ≤ 𝜖𝑥 , (2.20)

where 𝜖𝑥 > 0 (very small) is a given tolerance. At each time step, the outputs
(such as oil rate, water production, etc.) from the production wells depends on
the approximate solution from (2.19) and the input vector. These information are
vital for the computation of the NPV of the reservoir. Therefore, for convenience,
the output vectors of interest at each time step is denoted by:

y𝑖 = h𝜃𝜃𝜃,𝑖 (u𝑖, x̂𝑖), 𝑖 = 1, 2, ..., 𝑁𝑡 (2.21)

where x̂𝑖 is the solution from (2.19) at the 𝑖th time step. The process of obtaining
(2.21) is often called forward reservoir simulation.

The black-oil model demonstrated in this section is useful in simulating water
flooding (WF) and water alternating gas (WAG) flooding in oil reservoir. A
robust research purpose black-oil simulator used in this study is the Open Porus
Media (OPM) Flow (Baxendale et al., 2021). It is an open-source alternative for
the popularly known commercial simulators and can be used to implement, test,
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and validate new reservoir models and computational methods in realistic and
industrial settings. For an extensive comparison studies of the OPM Flow and
commercial simulators, the reader is referred to the work of (Rasmussen et al.,
2021).

2.2 EOR model

The above-explained black-oil model has been used extensively to predict the
performance of oil reservoirs under operating conditions such as water or WAG
flooding for reservoir evaluation and optimization. However, for operating condi-
tions such as EOR flooding, the model becomes unrealistic. The subsequent sub-
sections present extensions of the black-oil model suitable for simulating reservoir
performance under EOR flooding conditions of interest to this study.

2.2.1 Polymer model

In an oil reservoir with an unfavorable mobility ratio, water flooding experiences
viscous fingering, as shown in Figure 2.1a. This affects the displacement mecha-
nism of water flooding resulting in a high volume of left-over oil. In this scenario,
polymer flooding is one of the most widely used chemical EOR methods known to
mainly improve the mobility ratio in a water flooding setting, causing an improved
sweep efficiency. Injecting polymer into water flooding helps to reduce the occur-
rence of viscous fingering effect by increasing the viscosity of the injected fluid
(equivalently decreasing mobility ratio of oil-water system) and, consequently,
improves the sweep efficiency of water flooding, as shown in Figure 2.1b.

For simulating polymer flooding, this study considers the black-oil model in Sec-
tion 2.1, with additional continuity equation for polymer component assumed to
be transported in the water phase and has no effect on the oleic phase. The re-
sulting model is called the polymer EOR model. In addition, the model accounts
for the effect of polymer on dead pore space, adsorption in the rock, and perme-
ability reduction. Therefore, the polymer model is obtained by the inclusion of
the following continuity equation in the black-oil model.

𝜕

𝜕𝑡

[
𝜙𝜌𝑤 (1 − 𝑆𝑖𝑝𝑣)𝑆𝑤 + 𝜌𝑟𝑐

𝑎

𝑏𝑤𝑐
(1 − 𝜙)

]
+ ∇ · (𝜌𝑤v𝑝) = 𝑄𝑤, (2.22)

where 0 ≤ 𝑐 ≤ 1 is the polymer concentration expressed as the mass per unit
volume of water, 𝑐𝑎 := 𝑓 (𝑐) is a function of 𝑐 quantifying the polymer adsorption
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(a) Fingering effect (b) Non-Fingering effect

Figure 2.1: Fingering effect promoted by the unfavorable mobility ratio (left), and
good oil recovery facilitated by the use of polymer flooding (right) (Zerkalov,
2015).

concentration, 𝜌𝑟 is the reservoir rock density, and 𝑆𝑖𝑝𝑣 is the fraction of the
reservoir pore volume that is inaccessible. Further, v𝑝 is the polymer flux rate
given by

v𝑝 = − 𝑘𝑟𝑤

𝜇𝑝,eff𝑅𝑘

K(∇𝑝𝑤 − 𝜌𝑤a∇𝑠3), (2.23)

where 𝜇𝑝,eff is the effective polymer viscosity and 𝑅𝑘 models the permeability
reduction effect due to polymer adsorption onto the reservoir rock surface.

Since the mechanism of polymer flooding is to increase the water viscosity, the
flux rate of the water phase computed using Equation 2.8 is modified based on
the effective water viscosity denoted by 𝜇𝑤,eff. The new flux rate becomes:

v𝑤 = − 𝑘𝑟𝑤

𝜇𝑤,eff𝑅𝑘

K(∇𝑝𝑤 − 𝜌𝑤a∇𝑠3). (2.24)

To compute the effective viscosities 𝜇𝑝,eff and 𝜇𝑤,eff, the Todd-Longstaff model
in (Todd and Longstaff, 1972) is used. Here, the degree of polymer mixing with
water is measured by a mixing parameter 𝜔 ∈ [0, 1] . Usually, the selection of
𝜔 is based on the type of displacement setting, the geological heterogeneity, etc.
of the reservoir. When 𝜔 = 1, it means polymer is fully mixed with water and
𝜔 = 0 implies there is complete separation between polymer solution and pure
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water. Assume that 𝜇fmp denote the viscosity of a fully mixed polymer with water
solution, the effective polymer viscosity is computed as

𝜇𝑝,eff = 𝜇𝜔fmp · 𝜇
1−𝜔
𝑝 , (2.25)

where 𝜇𝑝 = 𝜇fmp(𝑐∗) is the viscosity of fully mixed polymer solution containing
the maximum allowable polymer concentration 𝑐∗. Similarly, the viscosity of
partially mixed water calculated as

𝜇pmw = 𝜇𝜔fmp · 𝜇
1−𝜔
𝑤 . (2.26)

Using Equations (2.25) and (2.26), the effective water viscosity is calculated
by

1
𝜇𝑤,eff

=
1 − 𝑐

𝜇pmw
+ 𝑐

𝜇𝑝,eff
, (2.27)

where 𝑐 = 𝑐
𝑐∗ . Experimentally, it has been shown that polymer may stick to the

rock surface by adsorption process, which in turn reduces the polymer concentra-
tion and hence causes resistance to flow which decreases the effective permeabil-
ity of water. For this reason, the accumulation term 𝜌𝑟𝑐

𝑎 (1 − 𝜙) is introduced in
Equation (2.23), to model this instantaneous and reversible process.

In general, the polymer model described in this section is known as a 4-component
multiphase black-oil flow model. Since the polymer component is transported
in the water or aqueous phase and has no effect on other phases (or pseudo-
components) except the water component, the primary state variables remains as
explained for the general black-oil model (see, Section 2.1). Therefore, solution
strategies for the polymer model equations also follows from the demonstration
in Sub-section 2.1.5 and it is fully implemented in the OPM reservoir simula-
tor.

Further, the input vector u in Equation (2.16) also includes polymer concentration
(and hence polymer rate) at the injection wells and the output vector in (2.21)
includes polymer production rate at the production wells.

2.2.2 Smart water model

Smart water (otherwise called low salinity water) flooding is a quite new EOR
method compared to polymer method, currently receiving huge treatise because
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of its cost-effective, low environmental impact, and potential of increasing oil
recovery (Yousef et al., 2011). This type of flooding involves the injection of
chemistry-optimized water in terms of salinity (or salt concentration) and ionic
composition (Yousef et al., 2012) into the reservoir.

Reservoir wettability

Wettability is a reservoir rock surface property, which measures the preference
of the rock surface to be wetted by a given phase or fluid and can affect the
fluid displacement process (Chen, 2007). For instance, a water wet rock implies
that the preferred fluid by the rock surface is water. Both capillary and relative
permeability effects are influenced by the wetting behavior of the rock in which
the oil is found.

If the rock surface is water wet (see, Figure 2.2a) then there is a tendency to have
lesser residual oil saturation (the proportion of oil which remains permanently
trapped by capillary effects at the pore scale). This is caused by the growth
in the water film on the rock surface during water flooding, which ultimately
leads to water squeezing out trapped droplets of oil within the pores, see Figure
2.2b. Consequently, more oil is produced at the production well as water flooding
continues until the breakthrough point, see Figure 2.2c.

If the rock is oil wet, then the proportion of oil trapped by capillary effects is
much lower, as oil continuity is maintained over the rock surfaces and through
the pore throats, but water breakthrough is earlier and there is a long period of
time during which oil and water are produced simultaneously. The net result is
that overall recovery is generally higher if the reservoir rock is oil wet but only
after a very large throughput of water.

Most oil reservoir rocks are thought to have a heterogeneous wettability, usually
termed “mixed wettability”, in that larger pores and throats have both water-
and oil-wet surfaces but smaller pores remain mainly water wet Muggeridge
et al. (2014). It is believed that the reservoir rock changes from an initially
water-wet state to this mixed wettability state after the migration of oil into the
reservoir.

The main EOR mechanism of Smart water is due to the chemistry between its
composition and the reservoir rock surface causing favorable changes in rock wet-
tability. Here, an initially oil-wet and/ or intermediate-wet rock surfaces become
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more water-wet due to contact with Smart water. Consequently, more oil becomes
detached from these surfaces to increase oil production (Fani et al., 2018; Ridwan
et al., 2020; Yousef and Ayirala, 2014).

(a) (b) (c)

Figure 2.2: Illustration of oil trapping in a water-wet rock. (a) At discovery the
sand grains are coated with a thin water film and the pores are filled with oil; (b)
as water flooding progresses the water films become thicker until; (c) the water
films join and oil continuity is lost (Muggeridge et al., 2014).

This study considers the salinity aspect of Smart water while the ionic composition
remains fixed and assumes there is only one salt specie. To simulate Smart water
flooding, similar assumptions for polymer are utilized. It is transported in the
water phase as additional component in the black-oil model of Section 2.1. In
addition, it can modify properties of other phase components to increase oil
production. For instance, a given salinity can cause changes in the water density
and viscosity, the saturation and relative permeability end-points of oil and water,
and water-oil capillary pressure.

The Smart water model considered in this study includes the Black-oil equations
in Section 2.1 and the continuity equation for salinity given in compact form
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as:

𝜕

𝜕𝑡
( 𝜙𝜌𝑤𝑆𝑤𝑐𝑠

𝑏𝑤
) − ∇ ·

( 𝜌𝑤𝑘𝑟𝑤

𝑏𝑤𝜇𝑠,eff
K(∇𝑝𝑤 − 𝜌𝑤a∇𝑠3)

)
𝑐𝑠 = 𝑄𝑤𝑐𝑠 . (2.28)

Here, 𝑐𝑠 is the salinity of Smart water and 𝜇𝑠,eff is the effective viscosity of salt
and it is calculated using the similar Todd-Longstaff procedure for polymer model.
Other parameters remains as before.

The reasoning regarding type of and solution for state variables in the Smart water
model is analogous to the polymer model described in the previous Section. In
addition, the input vector u in Equation (2.16) include Smart water concentration
(and hence Smart water rate) at the injection wells and the output vector in (2.21)
includes Smart water rate at the production wells.

2.2.3 Solvent model

So far, the chemical EOR models discussed in two sub-sections above are for
immiscible flooding. Here, the EOR chemicals such as polymer and smart water
are not miscible with the oil to form homogeneous mixture in order to improve
total oil recovery.

This section presents the mathematical modeling of solvent or carbon dioxide
(CO2) EOR method that is capable of becoming miscible with the oil at a rela-
tively high pressure called the Minimum Miscible Pressure (MMP) (Janiga et al.,
2020; Jia et al., 2013). CO2 is generally soluble in oil at reservoir pressures
and temperatures. It diffuses into and swells the net volume of oil in other to
reduce its viscosity and the interfacial tension between the oil and oil-CO2 phase,
contributing to microscopic displacement of oil, see Figure 2.3. This process
is generally called miscible displacement of oil by CO2. The injection of CO2
also affects the relative permeability, residual saturations, and density of reservoir
fluids.

Below the MMP, Wang (1980) found that CO2 undergoes immiscible displace-
ment. More so, the MMP required for CO2 to become miscible with oil is
dependent on several parameters such as slug size and purity of injected CO2,
reservoir temperature, and oil composition (Sehbi et al., 2001).

The modeling approach for solvent flooding usually involves computing the prop-
erties for the fully miscible and the immiscible cases and interpolate between the
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Figure 2.3: Schematic diagram illustrating the use of CO2 injection to Enhance
Oil Recovery (Alizadeh Nomeli and Riaz, 2013)

two limits using a measurable function, the miscibilty, dependent of pressure and
solvent saturation. The solvent model is formed by extending the black-oil model
with a fourth continuity equation for the CO2 component (denoted by 𝑠) given
by:

𝜕

𝜕𝑡
(𝜙𝜌𝑠𝑏𝑠𝑆𝑠) − ∇ ·

( 𝜌𝑠𝑏𝑠𝑘𝑟𝑠
𝜇𝑠

K(∇𝑝𝑔 − 𝜌𝑠a∇𝑠3)
)
= 𝑄𝑠, (2.29)

where 𝑄𝑠, 𝑆𝑠, 𝑘𝑟𝑠, 𝑏𝑠, and 𝜇𝑠 are the outflux density, saturation, relative perme-
ability, inverse of formation factor, and viscosity of solvent. In solvent flooding,
it is assumed that in each pore, there can exist four different components namely,
oil(o), water(w), solvent(s), and other reservoir gases (g). Therefore, the summa-
tion of saturations given in (2.9) is recomputed as;

𝑆𝑜 + 𝑆𝑤 + 𝑆𝑔 + 𝑆𝑠 = 1. (2.30)

In the usual black-oil model, the relative permeabilities for the three phases namely
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water, oil, and gas are defined as functions of saturation. That’s

𝑘𝑟𝑤 = 𝑘𝑟𝑤 (𝑆𝑤) (2.31)
𝑘𝑟𝑔 = 𝑘𝑟𝑔 (𝑆𝑔) (2.32)

𝑘𝑟𝑜 = 𝑘𝑟𝑜 (𝑆𝑤, 𝑆𝑔). (2.33)

In cases where two gas components (e.g., CO2(s) and other gas(g)) are present,
the total relative permeability 𝑘𝑟𝑔𝑡 of the gas phase is assumed to be a function
of the total gas saturation given as:

𝑘𝑟𝑔𝑡 = 𝑘𝑟𝑔 (𝑆𝑔 + 𝑆𝑠). (2.34)

The individual relative permeability of solvent and gas is then computed as a
function of the fraction of each gas component within the gas phase multiplied
by the total relative permeability (2.34). That’s

𝑘𝑟𝑠 = 𝑘𝑟𝑔𝑡 · 𝑘𝑟 𝑓 𝑠 (𝐹𝑠) (2.35)
𝑘𝑟𝑔 = 𝑘𝑟𝑔𝑡 · 𝑘𝑟 𝑓 𝑔 (𝐹𝑔). (2.36)

Here, 𝐹𝑠 =
𝑆𝑠

𝑆𝑠+𝑆𝑔 and 𝐹𝑔 =
𝑆𝑔

𝑆𝑠+𝑆𝑔 denote the fractions of solvent and reservoir gas
components. Typical examples of the relative permeability functions used in the
black-oil model and its extensions (such as solvent model, etc.) can be found in
(Rasmussen et al., 2021; Schlumberger, 2010).

Since the solvent component also modifies properties such as viscosity and density
of hydrocarbon fluids in the reservoir, their respective effective viscosities are
calculated using the Todd-Longstaff model (Todd and Longstaff, 1972; Chase and
Todd, 1984; Jakupsstovu et al., 2001) and effective densities follow from the work
of Chase and Todd (1984).

The present solvent model describes a miscible flooding. In this, there is tendency
for the solvent to completely dissolve in the oleic phase forming a homogeneous
oil-solvent mixture and vice-versa as explained in the Section 2.1. Therefore,
the state variables in the solvent model are the same as (2.14) and their solution
strategy follows accordingly as demonstrated in Section 2.1.5. However for this
study, the input vector u in Equation (2.16) include solvent rate instead of water
rate at the injection wells and the output vector in (2.21) includes solvent rate
at the production wells. The solvent model is also fully supported by the OPM
Framework.
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The black-oil model and its extensions, the EOR models, have been discussed with
three phases, namely oleic, water, and gas. However, for simulations involving two
phases such as oleic/water or oleic/gas, the models are simplified by reducing the
number of continuity equations accordingly to the phases (or pseudo-components)
present, considering appropriate saturation relation and related parametric prop-
erties for two-phase flow. In this case, the number of primary state variables to
solve for become reduced. Aside from this reduction, other formulations like the
wells equation remain the same.

For any reservoir model with geological properties stored as 𝜃𝜃𝜃, initial dynamic
states x0, and a given well configuration, the simulation of the reservoir response
(in terms of production output using (2.21)) with respect to a given EOR flood-
ing control can be done by using the appropriate EOR model present in this
chapter.

Different standard units exist for the reservoir parameters considered in this study.
In the numerical experiments performed, the metric unit is used. A complete list
of metric units of reservoir parameters can be found in (Baxendale et al., 2021;
Chen, 2007).
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3 EOR optimization

One of the main techniques in reservoir management is mathematical optimization.
In general, it is the process of finding the extremum (minimum or maximum) point
of an objective function defined on some unknown variables subject to some or no
constraints. In the presence of one or more constraints, the process is called con-
strained optimization. In contrast, it is called unconstrained optimization.

The development goal of a given reservoir usually involves the appropriate selec-
tion of control strategy (for the injection and production wells) for a given flooding
process in other to increase (maximize) return on investment (ROI) and reduce
(minimize) the risk of mismanaging limited resources. This process is formulated
as a constrained optimization problem. In this study, the objective function is the
NPV function which measures the economic value (or profitability) of all injected
and produced fluids discounted from the total cash flow. It is similar to the one
in (Xu et al., 2018; Zhou et al., 2013). However in their formulations, there is no
account for back-produced EOR chemical/gas.

To measure the quantities of fluids produced due to the response or dynamic
change of state (per time) of a given reservoir to injected fluids requires appropriate
reservoir modeling to simulate this behavior. The previous chapter presents the
general reservoir modeling of EOR methods considered in this study. In this case,
the information for the definition of the NPV can be accessed.

Here, the general constrained optimization problem suitable for reservoir develop-
ment with the EOR methods considered in this study is first discussed, followed
by the demonstration of appropriate solution method.

3.1 Constrained EOR optimization problem formulation

The aim of oil reservoir management with a given EOR method is to maximize
the economic value of the oil reservoir under limited production and injection
facilities. Most importantly, one wants to produce oil as much as possible while
the operational cost is at minimum within a given limit.

Suppose that the oil reservoir model of interest has a known geological properties
such as porosity and permeability, etc., given by 𝜃𝜃𝜃. Let D ⊆ R𝑁𝑢 be the domain
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of input control vector

U := {u𝑖}𝑁𝑡

𝑖=1 = [{𝑢 𝑗

𝑖
}𝑁𝑡

𝑖=1, 𝑗 = 1, 2, ..., 𝑁𝑤] (3.1)

for a given EOR method. Here, 𝑁𝑤 is the number of wells in the reservoir, 𝑁𝑡

remains its usual meaning as in Section 2.1.5, and u𝑖 is the input vector of wells
at simulation time step 𝑖. Further, 𝑁𝑢 = 𝑁𝑤 × 𝑁𝑡 is the total control variables of
each input vector U. For clarity, each component 𝑢 𝑗

𝑖
of U denotes a control type

such as water rate, EOR chemical/gas concentration or rate, oil rate or bottom
hole pressure (for production well) at the 𝑗−th well in the 𝑖−th time step. For
convenience, the desired outputs from all simulation time steps 𝑁𝑡 as a result of
U using Equation (2.21) shall be denoted as

Y = {y𝑖}
𝑁𝑡

𝑖
, (3.2)

where y𝑖 is the output vector at the 𝑖-th time step.

The general 𝑁𝑢− dimensional constrained EOR optimization problem is to find
the optimal U ∈ D that maximizes the reservoir NPV function subject to bound
constraints. That’s

maximize
U∈D

𝐽 (U, 𝜃𝜃𝜃) :=
𝑁𝑡∑︁
𝑖=1

𝐽𝑖 (u𝑖, y𝑖) (3.3)

with

𝐽𝑖 (u𝑖, y𝑖) =
[ 𝑁prod∑︁

𝑗=1

(
𝑟𝑜𝑦

𝑗

𝑜,𝑖
+ 𝑟𝑔𝑦

𝑗

𝑔,𝑖
− (𝑟𝑤𝑝𝑦

𝑗

𝑤𝑝,𝑖
+ 𝑟𝑒𝑝𝑦

𝑗

𝑒𝑝,𝑖
)
)
− (3.4)

𝑁𝑤∑︁
𝑗=𝑁prod+1

(
𝑟𝑤𝐼

𝑦
𝑗

𝑤𝐼 ,𝑖
+ 𝑟𝑒𝐼 𝑦

𝑗

𝑒𝐼 ,𝑖

)]
(1 + 𝑑𝜏)−

𝑡𝑖
𝜏

subject to

𝑢low
𝑗 ≤ 𝑢

𝑗

𝑖
≤ 𝑢

upp
𝑗

, ∀𝑖 = 1, 2, ..., 𝑁𝑡 , ∀ 𝑗 = 1, 2, ..., 𝑁𝑤 (3.5)

and
𝑁prod,𝑁𝑤∑︁

𝑗=1,𝑁prod+1
𝑢
𝑗

𝑖
≤ 𝐶𝜈

total, ∀𝑖 = 1, 2, ..., 𝑁𝑡 , 𝜈 ∈ {inj, prod}, (3.6)

where 𝑁prod denote the number production wells respectively, 𝐽𝑖 is the cumulative
NPV over the 𝑖−th simulation time step, 𝑑𝜏 is the discount rate for a period of
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time 𝜏, 𝑡𝑖 is the sum total time from the start of production up to the 𝑖−th time
step, Δ𝑡 = 𝑡𝑖−1 − 𝑡𝑖 is the difference between the time steps 𝑡𝑖 and 𝑡𝑖−1. The scalars
𝑟𝑜, 𝑟𝑔, 𝑟𝑤𝑝, 𝑟𝑤𝐼

, 𝑟𝑒𝑝, and 𝑟𝑒𝐼 are the price of oil and gas, cost of water and EOR
chemical/gas production and injection respectively. Further, 𝑦

𝑗

𝑜,𝑖
, 𝑦

𝑗

𝑔,𝑖
, 𝑦

𝑗

𝑤𝑝,𝑖
, and

𝑦
𝑗

𝑒𝑝,𝑖
represent the total oil, gas, water, and EOR chemical/gas produced over

the period of time Δ𝑡𝑖 at the production well 𝑗 = 1, 2, ..., 𝑁prod respectively. They
depend on the reservoir states (more specifically, the states at the well-block). The
quantities 𝑦

𝑗

𝑤𝐼 ,𝑖
and 𝑦

𝑗

𝑒𝐼 ,𝑖
denote the total water and EOR chemical/gas injected

over the period of time Δ𝑡𝑖 at the injection well 𝑗 = 𝑁prod + 1, ..., 𝑁𝑤 respectively
and are components in the input vector u𝑖 .

In the constraints functions (3.5), the quantities 𝑢low
𝑗

and 𝑢
upp
𝑗

are the lower and
the upper bounds for the input variable 𝑢

𝑗

𝑖
. This corresponds to the limitations

on capacities of the respective injection and/ or production wells. In addition,
the set of constraints (3.6) is defined on a specified input control type 𝑢

𝑗

𝑖
(e.g.,

water rate) of a given set of injection wells, 𝑗 = 1, ..., 𝑁prod and/ or production
wells 𝑗 = 𝑁prod +1, ..., 𝑁𝑤 for all time steps 𝑖 = 1, 2, ..., 𝑁𝑡 ; 𝐶𝜈

total is a non-negative
constant value specified based on the overall allowable capacity for the well type
𝜈, that’s

𝐶𝜈
total =


𝐶

prod
𝑡𝑜𝑡𝑎𝑙

, if 𝑗 = 1, 2, 3..., 𝑁prod

𝐶
inj
𝑡𝑜𝑡𝑎𝑙

, if 𝑗 = 𝑁prod + 1, ..., 𝑁𝑤,

(3.7)

with “inj”:=injection well and “prod”:=production well. This type of constraint
is applicable for cases where one considers grouping of input controls and as
such, want the sum of control type values in each time step not to exceed a given
limit.

For every given U ∈ D satisfying underlying constraints, the evaluation of objec-
tive function (3.3) requires solving the corresponding reservoir model Equation
(2.17) in other to obtain the components of output Y (see, Equations (2.21) and
(3.2)). For this reason, the optimization problem (3.3) - (3.6) is called model-
based.

Since 𝜃𝜃𝜃 is fixed, without lost of generality, the objective function (3.3) shall be
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simply written as 𝐽 (U). It is a multivariate real-valued function

𝐽 : R𝑁𝑢 −→R (3.8)
U ↦−→𝐽 (U)

that could be highly non-linear, because of the complexity of the reservoir model.
For this reason, solving the constrained problem (3.3) - (3.6) analytically is not
feasible. Instead, many studies (Brouwer and Jansen, 2002; Xu et al., 2018; Sarma
et al., 2006; Chen and Oliver, 2010; Jansen, 2011a; Lorentzen et al., 2006) have
provided different numerical solution methods to solve similar problems (e.g.,
water and polymer flooding optimization problems).

The solution methods are broadly grouped into two namely, gradient-based and
non-gradient (or derivative free) based methods (Jesmani et al., 2020; Islam et al.,
2020; Nocedal and Wright, 2006). Both solution techniques moves in the design
solution space D in a special pattern to search for the optimal solution.

The gradient-based method utilizes the gradient information (computed analyti-
cally or by approximation) of objective function to make a search in the solution
space while the derivative-free methods uses mainly the objective function values
in a stochastic way at each optimization iteration. For production optimization,
the derivative-free methods are proven to perform efficiently well for low di-
mensional problems, however become inefficient for high dimensional problems
(Arouri and Sayyafzadeh, 2020). Different versions of solution methods following
the derivative-free approach namely, genetic algorithm, particle swarm method
etc., can be found in (Goldberg, 1989; Eberhart and Kennedy, 1995; Semnani
et al., 2021; Chen et al., 2020)

Considering that the number of optimization variables of problem (3.3) - (3.6)
is usually large and ranges between 100 and above, the gradient-based methods
are more suitable for this problem. The present study proposes a solution tech-
nique for the constrained EOR problem that falls in the class of gradient-based
methods.
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4 Gradient-based optimization method

As mentioned in Section 3.1, the constrained EOR problem (3.3) - (3.6) is of high
dimension and non-linear. To find its optimal solution using gradient-based meth-
ods requires the gradient information of the objective function at each optimization
iteration. In this type of problem, access to analytic gradient is difficult. However,
several interesting techniques for appropriately and efficiently approximating the
gradient are available. It is noted that, poorly computed gradient schemes impact
the number of iterations that a solution method takes to converge. Here, the two
broadly used method of computing the approximate gradient of 𝐽, the adjoint and
stochhastic methods, in reservoir optimization problems are discussed.

4.1 Adjoint method

The adjoint method (Jansen et al., 2008; Sarma et al., 2005) is known to be the
most efficient and accurate way of computing the gradient of 𝐽 with respective to
the input vector u𝑖 ∈ U,∀𝑖 = 1, 2, ..., 𝑁𝑡 . It is obtained by applying the necessary
condition of optimality to the Lagrangian function arising from the objective
function and its underlying dynamic state constraints (Stengel, 1994). For an
arbitrary differentiable function 𝑓 , the necessary optimality condition states that
the gradient of 𝑓 vanishes at its optimal point. It is from the classical theory of
calculus (Nocedal and Wright, 2006; Snyman and Wilke, 2005).

From the formulation of 𝐽 in (3.3), an infinitesimal change of 𝐽, denoted by 𝛿𝐽

with respect to an infinitesimal change in component 𝑢 𝑗

𝑖
of u𝑖, denoted by 𝛿𝑢

𝑗

𝑖
is

computed using product rule as:

𝛿𝐽

𝛿𝑢
𝑗

𝑖

=
𝜕𝐽𝑖

𝜕u𝑖

𝜕u𝑖

𝜕𝑢
𝑗

𝑖

+
𝑁𝑡∑︁
𝑚=𝑖

( 𝜕𝐽𝑚
𝜕y𝑚

𝜕y𝑚
𝜕u𝑖

𝜕u𝑖

𝜕𝑢
𝑗

𝑖

+ 𝜕y𝑚
𝜕x𝑚

𝜕x𝑚
𝜕u𝑖

𝜕u𝑖

𝜕𝑢
𝑗

𝑖

)
=

[ 𝜕𝐽𝑖
𝜕u𝑖

+
𝑁𝑡∑︁
𝑚=𝑖

( 𝜕𝐽𝑚
𝜕y𝑚

𝜕y𝑚
𝜕u𝑖

+ 𝜕y𝑚
𝜕x𝑚

𝜕x𝑚
𝜕u𝑖

)] 𝜕u𝑖

𝜕𝑢
𝑗

𝑖

, (4.1)

for all 𝑗 = 1, 2, ..., 𝑁𝑤 in the time steps 𝑖 = 1, 2, ..., 𝑁𝑡 .

In Equation (4.1), the calculation of the derivatives 𝜕x𝑖
𝜕u𝑖

, 𝑖 = 1, 2, ..., 𝑁𝑡 require the
solutions x𝑖 to the corresponding non-linear algebraic equation (2.17) - (2.18).
This dependence is taken into account by setting (2.17), (2.18), and (2.21) as
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additional constraints to the optimization problem (3.3) - (3.6). Here, the resulting
problem is stated as follows (without the constraints (3.5) and (3.6) because they
are handled separately):

maximize
U∈D

𝑁𝑡−1∑︁
𝑖=0

𝐽𝑖+1(u𝑖+1, y𝑖+1) (4.2)

subject to:
g𝑖+1(u𝑖+1, x𝑖+1, x𝑖, 𝜃𝜃𝜃) = 0, 𝑖 = 0, 1, 2, ..., 𝑁𝑡 − 1, (4.3)
x0 − x0 = 0, (4.4)

and
y𝑖+1 − h𝜃𝜃𝜃,𝑖+1(u𝑖+1, x𝑖+1) = 0, 𝑖 = 0, 1, 2, ..., 𝑁𝑡 − 1. (4.5)

The Lagrangian function associated with (4.2) - (4.5) is given as:

𝐿 (U,X,Y,ΛΛΛ, 𝑀𝑀𝑀) =
𝑁𝑡−1∑︁
𝑖=0

(
𝐽𝑖+1(u𝑖+1, y𝑖+1) + 𝜆𝜆𝜆T

0 (x0 − x0) + 𝜆𝜆𝜆T
𝑖+1g𝑖+1(u𝑖+1, x𝑖+1, x𝑖, 𝜃𝜃𝜃)

+𝜇𝜇𝜇T
𝑖+1(y𝑖+1 − h𝜃𝜃𝜃,𝑖+1(u𝑖+1, x𝑖+1))

)
,

(4.6)

where X retains all dynamic states x𝑖+1,∀𝑖 = 0, 1, ..., 𝑁𝑡 − 1; ΛΛΛ = {𝜆𝜆𝜆𝑖}𝑁𝑡−1
𝑖=0 and

𝑀𝑀𝑀 = {𝜇𝜇𝜇𝑖+1}𝑁𝑡

𝑖=0 are Lagrangian multipliers. On the application of necessary op-
timality condition to the variation of (4.6) with respect to the given variables
(namely, components of U,X,ΛΛΛ, and 𝑀𝑀𝑀 respectively), equations (A.7)-(A.14) are
obtained.

Suppose (for the moment) that the input control U satisfies the constraints (3.5) -
3.6, then the system of differential equations (A.7) - (A.14) is called the adjoint
model for the specific constrained EOR optimization problem (3.3) - (3.6).

Since Equations (A.7), (A.8), and (A.9) correspond to the prescribed initial state
condition (2.18), the algebraic EOR model equation (2.17), and the output vector
(2.21) respectively, they are instinctively satisfied.

Using the differential equation (A.10), the components of 𝑀𝑀𝑀 are computed. Sub-
stituting 𝜇𝜇𝜇𝑁𝑡

∈ 𝑀𝑀𝑀 into Equation (A.11) gives 𝜆𝜆𝜆𝑁𝑡
. Further, using the components

of 𝑀𝑀𝑀 and 𝜆𝜆𝜆𝑁𝑡
, the remaining components of ΛΛΛ are computed backwardly in time

step 𝑖 = 𝑁𝑡 − 1, 𝑁𝑡 − 2, ..., 2, 1, 0 using the differntial equation (A.12).
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By substituting the respective Lagrangian multipliers into Equation (A.14), the
gradient of objective function 𝐽 with respect to the input control u𝑖+1,∀𝑖 =

0, 1, ..., 𝑁𝑡 − 1 is computed as follows1:

∇u𝑖+1𝐽 :=
𝜕𝐿

𝜕u𝑖+1
=

𝜕𝐽𝑖+1
𝜕u𝑖+1

+ 𝜆𝜆𝜆T
𝑖+1

𝜕g𝑖+1
𝜕u𝑖+1

+ 𝜇𝜇𝜇T
𝑖+1

𝜕h𝜃𝜃𝜃,𝑖+1

𝜕u𝑖+1
. (4.7)

The adjoint procedures for computing the gradient of the objective function (3.3)
is summarized in Appendix A.2 (see, Algorithm 3)

It is clear from the above demonstrations that the adjoint method of computing the
gradient of 𝐽 requires the information of the dynamic states X and the correspond-
ing output Y. Access to this information at all time steps is crucial. Although the
adjoint method produces an accurate result, a specific implementation cannot be
easily used if the model equations or selection of control variables change.

The non-reusable of adjoint equations is because, for instance, reservoir develop-
ment with distinct recovery processes give rise to a different algebraic equations
(2.17) and hence different reservoir simulators 2. More so, computing the gradient
of 𝐽 by the adjoint method would require access to the reservoir simulator code
to get information for the gradient (Sarma et al., 2005, 2006; Jansen, 2011a).
Therefore, it is almost impossible to use the adjoint method while keeping the
reservoir simulator as a black box.

To solve the problem of adjoint model reusability for well placement optimization
problems, indirect methods were developed (see, e.g., Sarma and Chen (2008);
Zandvliet et al. (2008)). However, computing the adjoint gradient without looking
into the reservoir simulator is inevitable. This is one reason for exploring other,
less intrusive, optimization methods

Further, the objective function (3.3) is highly multi-modal, i.e., it has multiple
optimal solutions, see, e.g., Figure 4.1, because of its dependence on the reservoir
simulator with several operational constraints. Consequently, the optimality con-
dition used to compute the classical adjoint gradient is insufficient to guarantee an
ascent direction leading to the best optimal solution. In this case, the optimization

1Equation (4.7) denotes the effect of varying the input control u𝑖+1 on the objective function
(3.3) while other variables are constant. At a non-optimal input control, ∇u𝑖+1𝐽 ≠ 0.. However, this
non-zero valued vector is used as the gradient of J at the said control.

2The dynamic states and hence the output of the oil reservoir due to a given input control per
time (see Section 2.1) are obtained by solving this algebraic equations
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algorithm using the adjoint method is prone to finding a less desirable sub-optimal
solution such as point A in Figure 4.1. There are other methods based on input
control perturbations for computing the approximate gradient that can be efficient
for high-dimensional and multi-modal problems.

Figure 4.1: An example of one dimensional multi-modal function.

4.2 Stochastic method

The stochastic methods provide alternative and effective ways to approximate the
gradient of 𝐽. Instead of using the adjoint model, stochastically perturbed input
control with appropriate statistics are used to establish the gradient of 𝐽. The Finite
Difference Stochastic Approximation (FDSA) is a classical stochastic gradient
method that uses a finite difference scheme to approximate each component of the
gradient function. It proves to give high accuracy and converges very fast for low
dimension problems. For a problem with 𝑁𝑢 control variables, the FDSA method
perturbs each variable per time and uses 2𝑁𝑢 function evaluations to compute the
gradient of 𝐽 with respect to the variable. Hence in total, a full gradient requires
2𝑁2

𝑢 function evaluations which translates to 2𝑁2
𝑢 reservoir simulation runs. This

process becomes computationally very expensive and inefficient to use for high
dimension optimization problems (Jesmani et al., 2020; Zhou et al., 2013).
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The efficiency of the FDSA method improves by simultaneously perturbing all
the input variables using suitable statistics to compute the gradient function per
time. This gives rise to the Simultaneous Perturbation Stochastic Approximatio
(SPSA) technique. Here, a complete gradient computation requires only 2 func-
tion evaluations (equivalently, 2 simulation runs) (Zhou et al., 2013) instead of
2𝑁2

𝑢 evaluations by the FDSA method. The computational cost becomes greatly
reduced using the SPSA technique.

The numerical experiment of Zhou et al. (2013) illustrates that the gradient func-
tion is estimated poorly by the SPSA method. It occurs where the contributions
of different input variables to the overall change of the objective function consid-
erably differ. Because of this, solution methods utilizing the SPSA gradients take
a large number of iterations than the FDSA method before convergence. There-
fore, a modified SPSA (called the SPSA-FDG) method was proposed, where a
similar magnitude of contributions of different variables to the overall change of
the objective function is systematically enforced. Other variants of the SPSA-
FDG methods exist in the literature and there their theoretical connections are
demonstrated in (Do and Reynolds, 2013).

Patelli and Pradlwarter (2010) introduced the Monte Carlo Gradient Approxima-
tion (MCGA) technique as alternatives to efficiently compute gradient of a generic
function in high dimension settings. Here, 𝑁 samples of input variables from a
normal distribution and their respective function values are used to approximate
the gradient using the Monte Carlo method. Xu et al. (2018) showed that the
MCGA gradient is an unbiased estimation of the true gradient. Since it is Monte
Carlo estimation, it is observed that the accuracy of the gradient increases as the
number of perturbations tends to infinity.

Since the stochastic methods mentioned above use a given number of input variable
realizations to compute the gradient function, they are often called the ensemble-
based methods. The subsequent section discusses a version of the ensemble-based
method utilized in this study.

4.2.1 Ensemble-based optimization method

The EnOpt approach is an efficient and non-intrusive stochastic method for ap-
proximating the gradient. Lorentzen et al. (2006) introduced the earlier version,
and later developed into its current forms in (Chen et al., 2009; Chen and Oliver,
2010) and (Fonseca et al., 2014, 2017). For high-dimensional problems, the
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present state of the EnOpt method has been proven (using hypothesis testing) to
give good quality gradient close to the adjoint method (Fonseca et al., 2015).
For a given input vector U, the EnOpt method uses an ensemble of input vectors
normally distributed around U to estimate the gradient of the objective function
at U. The version of the EnOpt method presented here is similar to the Stochastic
Simplex Approximate Gradient (StoSAG) technique (Fonseca et al., 2014).

For a single geology

With respect to a single geology 𝜃𝜃𝜃, the present formulation of the EOR optimiza-
tion problem (3.3) - (3.6) is called a deterministic problem. Here, one considers
to solve the same non-linear algebraic equations (2.17) associated with the EOR
method for different input controls to get their respective outputs using Equation
(A.9). This information is then used to compute the objective function (3.3) values
of the input vectors.

As mentioned in Section 3.1, for the deterministic case, 𝐽 (U) := 𝐽 (U, 𝜃𝜃𝜃). Given
an input vector U, the EnOpt method estimates the gradient of 𝐽 at U as follows:
Sample 𝑁 input vectors from a multivariate uniform distribution with mean U and
a predefined covariance matrix CU of size 𝑁𝑢 . That’s, U𝑘 ∼ N(U,CU), ∀𝑘 =

1, 2, ..., 𝑁. Otherwise, each perturbed vector U𝑘 are obtained using the standard
normal random vector z ∼ N(0, I) such that:

U𝑘 = U + C1/2
U z𝑘 , ∀𝑘 = 1, 2, ..., 𝑁, (4.8)

where C1/2
U is obtained by Cholesky decomposition (Higham, 2008; Jain, 2003)

and I is an identity matrix size 𝑁𝑢 . Although in this study the realizations of U
follow a normal distribution, the same experiments can be performed with other
types of distribution like in (Sarma and Chen, 2014).

With respect to each perturbed vector U𝑘 in (4.8), the objective function 𝐽 (U𝑘 ) is
evaluated. This information is used to approximate the sample cross-covariance
CU,𝐽 (U) of the input control U and objective function 𝐽 (U) as follows:

CU,𝐽 (U) =
1

𝑁 − 1
ΔUΔ𝐽T, (4.9)

where
ΔU = [U1 − U,U2 − U, ...,U𝑁 − U]
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is a matrix of size 𝑁𝑢 × 𝑁 and

Δ𝐽 = [𝐽 (U1) − 𝐽 (U), 𝐽 (U2) − 𝐽 (U), ..., 𝐽 (U𝑁 ) − 𝐽 (U)]

is a vector of size 𝑁.

Pre-multiplying the cross-covariance in (4.9) by the inverse of the sample co-
variance CU,U gives the approximate gradient of 𝐽 at U by the EnOpt method.
That’s

∇U𝐽 ≈ C−1
U,UCU,𝐽 (U) . (4.10)

Here,

𝐶U,U =
1

𝑁 − 1
ΔUΔUT. (4.11)

When 𝑁 < 𝑁𝑢, the sample covariance CU,U becomes rank-deficient which could
lead to a bang-bang optimal solution (i.e., solution with components switching
between two extreme values over the entire simulation time steps). To avoid
this situation, Chen et al. (2009) proposed a modified version of the gradient by
pre-multiplying the right hand side of Equation (4.10) with C2

U,U.

So far, the mathematical formulation of the gradient computation by the EnOpt
method for the deterministic case has been presented. However, one main interest
of the present study is to find optimal control strategies for EOR methods, taking
into account the uncertainty description in reservoirs. Therefore, the subsequent
section presents the the general EnOpt method for gradient computation in this
case.

For multiple geologies

The process of reservoir modeling is highly uncertain because of limited knowl-
edge about geological parameters such as porosity, etc. Yeten (2003) found that
incorporating geological uncertainties into the water flooding optimization proce-
dure reduces the uncertainty in optimization results. The numerical experiment of
(Van Essen et al., 2009) showed that optimization over multiple geologies gives
an optimal solution with increased economic value and reduced variance on ap-
plication to the different geologies. This optimization framework is called robust
optimization. On this account combined with the physical observation regarding
possible impact of reservoir uncertainty on EOR effect in Section 1.4, it sounds

36



Gradient-based optimization method

more reliable to consider geological uncertainty when solving the optimization
problem (3.3) - (3.6).

This study quantifies uncertain geological parameters in a given oil reservoir by
choosing a suitable ensemble of geological realizations of the reservoir denoted
by ΘΘΘ = {𝜃𝜃𝜃𝑚}𝑁𝑒

𝑚=1. Here, 𝑁𝑒 is the ensemble size. Also, assume that all geology are
equally likely to be a true representation of the reservoir. The EOR optimization
problem (3.3)-(3.6) is reconstructed as finding the optimal input control U ∈ D
that maximizes the expectation of 𝐽 in (3.3) over ΘΘΘ denoted by 𝐽ΘΘΘ(U) subject to
the same set of constraints (3.5) - (3.6). Therefore, the new objective function is
given by:

𝐽ΘΘΘ(U) = 1
𝑁𝑒

𝑁𝑒∑︁
𝑚=1

𝐽 (U, 𝜃𝜃𝜃𝑚) ≈ EΘΘΘ [𝐽 (U)] . (4.12)

The objective (4.12) with constraints (3.3)-(3.6) shall be referred to as the Robust
EOR Optimization (REORO) problem in the rest of this study.

Different from cases with a single geology, one has to solve 𝑁𝑒−different alge-
braic equations (2.17) for a given input control resulting to 𝑁𝑒−outputs using
(A.9). On this account, the objective function (4.12) value computes at the input
control.

Several EnOpt formulations for computing the gradient of 𝐽ΘΘΘ at a given input U
exist in the literature see, e.g., Fonseca et al. (2017, 2014); Chen et al. (2009). In
general, one samples 𝑁 ≥ 𝑁𝑒 input vectors using (4.8). Couple each perturbed
vector U𝑘 to 𝑁𝑒−geologies and compute 𝐽 (U𝑘 , 𝜃𝜃𝜃𝑚), ∀𝑚 = 1, 2, ..., 𝑁𝑒 . The average
over all perturbations of (4.9) is computed, and the expectation of the gradient of
𝐽ΘΘΘ follows from Equation (4.10).

In a more mathematical sense, assume that one seeks to find the approximate
gradient of 𝐽ΘΘΘ (equivalently, its expected value) at an input control U𝑙 and suppose
also that different 𝑁−samplings of U𝑙 are drawn using (4.8) for each geology 𝜃𝜃𝜃𝑚
and denote by {U𝑙

𝑚,𝑘 }𝑁𝑘=1,∀𝑚 = 1, 2, ..., 𝑁𝑒 . For a given 𝜃𝜃𝜃𝑚, the Taylor’s expansion
of 𝐽 about U𝑙 gives:

𝐽 (U, 𝜃𝜃𝜃𝑚) − 𝐽 (U𝑙 , 𝜃𝜃𝜃𝑚) = ∇U𝐽 (U𝑙 , 𝜃𝜃𝜃𝑚)T(U − U𝑙) + O(| |U − U𝑙 | |2), (4.13)
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Pre-multiply both sides of (4.13) by (U − U𝑙) and set U := U𝑙
𝑚,𝑘 lead to:

[𝐽 (U𝑙
𝑚,𝑘 , 𝜃𝜃𝜃𝑚) − 𝐽 (U𝑙 , 𝜃𝜃𝜃𝑚)] (U𝑙

𝑚,𝑘 − U𝑙) = ∇U𝐽 (U𝑙 , 𝜃𝜃𝜃𝑚)T(U𝑙
𝑚,𝑘 − U𝑙) (U𝑙

𝑚,𝑘 − U𝑙)
+O(| |U𝑙

𝑚,𝑘 − U𝑙 | |3).
(4.14)

Here O(||U𝑙
𝑚,𝑘 − U𝑙 | |3) is the remaining terms containing higher order (≥ 3) of

(U𝑙
𝑚,𝑘 − U𝑙). This study assumes the magnitude of (U𝑙

𝑚,𝑘 − U𝑙) to be very small
(tends to zero). As such, terms with higher order (≥ 3) of this difference become
approximately negligible. Therefore, (4.14) leads to
[𝐽 (U𝑙

𝑚,𝑘 , 𝜃𝜃𝜃𝑚) − 𝐽 (U𝑙 , 𝜃𝜃𝜃𝑚)] (U𝑙
𝑚,𝑘 − U𝑙) ≈ ∇U𝐽 (U𝑙 , 𝜃𝜃𝜃𝑚)T(U𝑙

𝑚,𝑘 − U𝑙) (U𝑙
𝑚,𝑘 − U𝑙).

(4.15)
Since (4.15) is approximately true for all 𝑚 = 1, 2, ..., 𝑁𝑒 and 𝑘 = 1, 2, ..., 𝑁, then
it is not hard to see that the following expression holds:

1
𝑁

𝑁∑︁
𝑘=1

1
𝑁𝑒

𝑁𝑒∑︁
𝑚=1

[𝐽 (U𝑙
𝑚,𝑘 , 𝜃𝜃𝜃𝑚) − 𝐽 (U𝑙 , 𝜃𝜃𝜃𝑚)] (U𝑙

𝑚,𝑘 − U𝑙) ≈

1
𝑁

𝑁∑︁
𝑘=1

1
𝑁𝑒

𝑁𝑒∑︁
𝑚=1

∇U𝐽 (U𝑙 , 𝜃𝜃𝜃𝑚)T(U𝑙
𝑚,𝑘 − U𝑙) (U𝑙

𝑚,𝑘 − U𝑙). (4.16)

Taking the expectations, first with respect to U𝑙 and secondly with respect to ΘΘΘ

of the right hand side expression in (4.16), and then substituting (4.12) and (4.11)
gives the following:

EU𝑙

[
EΘΘΘ

( 1
𝑁

𝑁∑︁
𝑘=1

1
𝑁𝑒

𝑁𝑒∑︁
𝑚=1

∇U𝐽 (U𝑙 , 𝜃𝜃𝜃𝑚)T(U𝑙
𝑚,𝑘 − U𝑙) (U𝑙

𝑚,𝑘 − U𝑙)
)]

=

1
𝑁

𝑁∑︁
𝑘=1
EU𝑙

[
(U𝑙

𝑚,𝑘 − U𝑙) (U𝑙
𝑚,𝑘 − U𝑙)

]
∇U

( 1
𝑁𝑒

𝑁𝑒∑︁
𝑚=1
EΘΘΘ(𝐽 (U𝑙 , 𝜃𝜃𝜃𝑚))

)
= 𝐶U𝑙 ,U𝑙∇U𝐽ΘΘΘ(U𝑙). (4.17)

This implies that the left hand side expression in (4.16) is an unbiased estimator of
the preconditioned gradient function obtained in (4.17). Consequently, the desired
approximate gradient is arrived at using (4.17) and (4.16). That’s:

∇U𝐽ΘΘΘ(U𝑙) ≈ 𝐶−1
U𝑙 ,U𝑙

[ 1
𝑁

𝑁∑︁
𝑘=1

1
𝑁𝑒

𝑁𝑒∑︁
𝑚=1

[𝐽 (U𝑙
𝑚,𝑘 , 𝜃𝜃𝜃𝑚) − 𝐽 (U𝑙 , 𝜃𝜃𝜃𝑚)] (U𝑙

𝑚,𝑘 − U𝑙)
]
.

(4.18)
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From (4.18), it is seen that the gradient requires 𝑁 × 𝑁𝑒−function evaluations
(equivalently, solving 𝑁 × 𝑁𝑒−algebraic equations (2.17)). Although, this is com-
putationally very expensive, the gradient quality increases with increase in 𝑁 as
demonstrated by Fonseca et al. (2015) using hypothesis testing for the Rosen-
brock’s problem with uncertainty, see Figure 4.2.

Figure 4.2: Variation of gradient quality (decrease in mean angle implies increase
in quality) with the number of perturbed input controls for each model realization
(Fonseca et al., 2015) .

Moreover, Fonseca et al. (2015) demonstrates using a practical example that with
𝑁 = 1 in (4.18) results in an improved optimal solution compared to the standard
EnOpt approach3, and thus present study follows this approach. Here, a one-to-
one coupling of the perturbed vectors with geologies is incorporated. The EnOpt
procedures for calculating the gradient of 𝐽ΘΘΘ is further summarized in Algorithm
(1).

4.3 Optimization algorithm

Given the procedures for computing the gradient of the objective function (4.12)
using the EnOpt method, this section presents the optimization algorithm utilized

3The standard EnOpt method presented by Chen et al. (2009) computes (4.18) by setting U𝑙 :=
1
𝑁𝑒

∑𝑁𝑒

𝑚=1 U𝑙
𝑚,𝑘

and 𝐽 (U𝑙 , 𝜃𝜃𝜃𝑚) := 1
𝑁𝑒

∑𝑁𝑒

𝑚=1 𝐽 (U
𝑙
𝑚,𝑘

, 𝜃𝜃𝜃𝑚) with 𝑁 = 1.
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Algorithm 1: Computation of gradient of the objective function (4.12) using
the robust EnOpt method in a general setting.
input: Prescribe input control U = {u𝑖+1}𝑁𝑡−1

𝑖=0 , sample size 𝑁, ensemble size
𝑁𝑒, and covariance matrix 𝐶U.

output: ∇U𝐽ΘΘΘ.
1 begin
2 forward simulation with OPM-Flow
3 Compute output vector Y = {y𝑖}

𝑁𝑡

𝑖=1 using Equation (2.21) for each
𝜃𝜃𝜃𝑚, to evaluate 𝐽 (U, 𝜃𝜃𝜃𝑚) 𝑚 = 1, 2, ..., 𝑁𝑒 using (3.3).

4 simultaneous perturbation
5 Using (4.8), generate a sample space of size 𝑁 × 𝑁𝑒 with mean U

and covariance matrix 𝐶U.
6 forward simulation with OPM-Flow
7 for 𝑚 = 1 = 1, 2, ..., 𝑁𝑒 do
8 Couple different 𝑁 perturbed vectors with 𝜃𝜃𝜃𝑚 until the sample

space is exhausted
9 for 𝑘 = 1, 2, ..., 𝑁 do

10 Compute output vector Y = {y𝑖}
𝑁𝑡

𝑖=1 using Equation (2.21)
for U𝑘,𝑚 and 𝜃𝜃𝜃𝑚 to evaluate 𝐽 (U𝑘,𝑚, 𝜃𝜃𝜃𝑚) using (3.3)

11 Compute ∇U𝐽ΘΘΘ using Equation (4.18).

in this study to arrive at the desired optimum of the robust EOR optimization
problem. Although it is difficult to find the global solution to the problem, it is
possible to arrive at a desirable approximate solution to the global optimum using
a suitable direct-search approach. Here, focus is on the minimization equivalence
of the REORO problem since −min(−𝐽ΘΘΘ) = max 𝐽ΘΘΘ.

In this study, the line search technique is used to find the approximate solution
(Nocedal and Wright, 2006; Snyman and Wilke, 2005). In general, the line search
algorithm starts with a user-defined initial estimate U0 to the optimum U∗ and
generates a sequence of improved (in the sense of enough decrease in function
value) estimates or iterates U0,U1,U2,U3, ..., by successively searching from each
estimate along a descent direction to obtain the subsequent estimate. The process
continues until a given convergence criterion has been sufficiently satisfied. Hence,
the last iterate becomes the approximate optimum solution.

40



Gradient-based optimization method

The important parts of any line search method are the search direction denoted by
d𝑙 and the step length 𝛽𝑙 to take along d𝑙 at each 𝑙−th optimization iteration to get
an improved estimate. Algorithm 2 states the general exact line search procedures
to find the optimum point of 𝐽ΘΘΘ in (4.12). It is exact because the step length is
computed by solving exactly a one-dimensional minimization sub-problem at each
iteration, see, Line 5 of Algorithm 2. Further, Figure 4.3 illustrates the structure
of Algorithm 2 for an arbitrary function.

Algorithm 2: General procedure of an exact line search method.
input: Prescribe input control U0, maximum number of iterations N𝑛, and

positive tolerance 𝜖1
output: optimum U∗

1 begin
2 for 𝑙 ∈ N𝑛 do
3 choose d𝑙

4 while |𝐽ΘΘΘ(U𝑙+1) − 𝐽ΘΘΘ(U𝑙) | > 𝜖1 do
5 find 𝛽𝑙 : min 𝐽ΘΘΘ(U𝑙 + 𝛽𝑙d𝑙)
6 choose U𝑙+1 := U𝑙 + 𝛽𝑙d𝑙

7 set 𝑙 := 𝑙 + 1

8 return U∗ := U𝑙+1

This study considers a preconditioned gradient descent inexact line search method.
Here, the search direction is computed by preconditioning the approximate gradi-
ent formulation in (4.18) with input control covariance. That’s

d𝑙 = 𝐶U𝑙 ,U𝑙∇U𝑙𝐽ΘΘΘ(U𝑙), ∀𝑙 ∈ N𝑛. (4.19)

Chen et al. (2009) and Fonseca et al. (2017) showed that using a preconditioned
gradient as the search direction gives a smoother direction. The gradient precon-
ditioned with the square of covariance matrix 𝐶U𝑙 ,U𝑙 is called the regularized or
smoothed approximate gradient.

Since the solution search space D of the REORO problem has infinitely many
points, it is therefore impossible to find a fixed global optimal covariance matrix
that can generate ensemble of appropriate controls for gradient computation in all
optimization iterations. For this reason, we use the Covariance Matrix Adaptation

41



Gradient-based optimization method

Figure 4.3: Contour plot of a function with sequence of estimates from line search
method approaching the optimum point U∗.

(CMA) technique to continuously improve the distribution covariance matrix for
good quality gradient, see PAPER III.

Many accurate one-dimensional minimization methods (for Line 5 in Algorithm
3) exist in the literature, e.g., quadratic and cubic interpolation techniques of
Powell (1964); Davidon (1959) for problems with smooth functions, bracketing (or
Fibonacci search) method of Kiefer (1957) is more suited for poorly conditioned
function. However, the computational cost associated with solving exactly the
minimization problem of Line 5 in Algorithm 2 is demanding considering the
size and complexity of the objective function (4.12). To reduce cost, this study
considers an inexact approach similar to the backtracking technique (Nocedal and
Wright, 2006) and can be found in Paper IV.

4.4 Constraint handling technique

At each stage of constrained optimization, one must ensure the input control
variables honor the underlying constraints. For the REORO problem in this study,
the bound constraints (3.5) is taking care of using an appropriate bijective linear
function which administers suitable optimization domain to the original search
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space of the input control U, see, PAPER I. In the administered space, we carry
out optimization procedures, and to evaluate the function value of a given control,
its equivalence in the original solution space is used. The equivalence is obtained
by using the inverse of the linear transformation.

In general, the constraints (3.6) are usually handled by the reservoir simulator.
Setting an upper limit for a group of a given control type, e.g., water rate at
injection wells, is managed by the group operational constraints imposed by the
simulator. In situations where these constraints are violated, the simulator switch
from rate to pressure control.

PAPER I and PAPER III presents optimization results obtain by using a special
case (𝑁 = 1) of the solution method presented in Algorithm 2 to solve the REORO
problems associated with synthetic reservoir models.

4.5 Application for robust EOR quantification and ranking

The evaluation of the economic benefit of an EOR strategy for a given reservoir
field is in this study called the EOR value quantification. In PAPER III, we carry
out the value quantification of EOR methods with traditional water flooding as a
reference point. In this, we weigh the performance of the optimal control strategy
(obtained by solving the associated REORO problem as presented in Section 4.3)
for each EOR method over that of water flooding in terms of fluid productions
and NPV value. These results are, in turn, used to rank the EOR methods for the
examples considered.

For the quantification and ranking of EOR strategies, this study considers three
different oil reservoir models, namely 2D five-spot, 3D Reek, and 3D Olympus,
with distinct rock fluid properties. The Reek and the Olympus models have been
developed to mimic the North Sea Reservoirs.

The five-spot field

This is an in-house 2D reservoir model with three-phase flow (including oil, water,
and gas). The model has one injection and four production wells spatially arranged
in a five-spot pattern as shown in Figure 4.4. The field is uniformly discretized
into 50 × 50 grid cells, with Δ𝑥 = Δ𝑦 = 100 m. On average, the reservoir has
approximately 30% porosity with heterogeneous permeability distribution. The
initial reservoir pressure is 200 bar. The initial average oil and water saturations
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are respectively 0.6546 and 0.3454. The original oil in place (OOIP) is 4.983×106

sm3. Fluid properties are similar to that of a light oil reservoir. The viscosity (in
cP) for saturated oil at varying bubble point pressure lies in the interval [0.1, 0.56]
and viscosity of water is 0.2 cP. The densities of oil and water are taken as 732
kg/m3 and 1000 kg/m3 respectively.

Figure 4.4: Porosity distribution of the five-spot field.

The Reek field

This is a 3D reservoir model designed by Equinor. It has three phases (including
oil, water, and gas). The reservoir model is defined on an irregular grid system of
dimensions 40 × 64 × 14. This results in a total of 35840 grid cells with different
sizes. There are three zones (UpperReek, MidReek, and LowerReek) with six
faults and varying porosity and permeability. The model is equipped with five
production and three injection wells (see Figure 4.5). All the three injectors
are positioned in the water saturated zones, while the producers are spatially
distributed throughout the oil containing region based on engineering intuition.
The oil viscosity (in cP) is modeled as a function of bubble point pressure and
lies in the closed interval [0.09, 1] . The water viscosity is 0.25 cP. However, for
this reservoir, uncertain properties such as facies, porosity, permeability, oil-water
contacts, relative permeability, and transmissibility across five faults (out of the
six) are quantified using 50 geological realizations. Although there are 35840 grid
cells, not all of them are active. The number of active cells varies with geology.
On average, the original oil in place (OOIP) is 4.831×107 sm3. The initial average
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oil, water, and gas saturations are 0.1436, 0.8509, and 0.0055 respectively. The
reservoir model is divided into two saturation regions. Figure 4.6 shows the
relative permeability of the 50 geo-models in the saturation regions.

Figure 4.5: The initial saturation map (for oil, water and gas) for a geo-model of
the Reek field.

(a) Pressure (b) Saturation

Figure 4.6: Relative permeability of the 50 geo-models of the Reek field. (a)
Relative permeability in the saturation region 1. (b) Relative permeability in the
saturation region 2.

The Olympus field

The Olympus field is a 3D synthetic reservoir model (see Figure 4.7) with two
phases (including oil and water). It is designed by the Netherlands organization for
applied Scientific Research (TNO). A detailed description of the reservoir model
is found in (Fonseca et al., 2018). The dimension of the model is 118× 181× 16.
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In total, there are 341728 grid cells of which 192750 are active. The size of
each grid cell is 50m × 50m × 3m. The model has 16 layers, which are separated
into two zones (top and bottom zones) by an impermeable shale. Four different
facies types, namely the channel sand, shale, coarse and fine sands, are modeled
in the different layers. The porosity and permeability distributions for each facies
in these layers are generated using a geo-statistical model. There are 18 wells
in the Olympus field, namely 11 producers and 7 injectors. We consider the
same fluid properties and their respective distributions presented in Fonseca et al.
(2018) except that we have slightly increased the oil viscosity values. Now, the
range of values (in cP) for the oil viscosity modeled as a function of bubble point
pressure is taken as [20.5, 40.5]. The increase in viscosity is to ensure heavier oil
in the reservoir. The uncertain properties in the reservoir are the facies, porosity,
permeability, net-to-gross ratio, initial water saturation and transmissibility across
the faults, and are quantified using 50 geological realizations. On average, the
original oil in place (OOIP) is 4.95 × 107 sm3. The oil and water saturation vary
from one model to another. The Olympus field has four saturation regions. The
relative permeability curves in the four regions are depicted by Figure 4.8. Unlike
in the Reek field, we used the same saturation region for all the 50 geological
realizations.

Figure 4.7: The initial oil saturation map for a geological realization of the
Olympus field.

4.6 Improved EnOpt method for constrained optimization

The constraint handling procedure presented in Section 4.4 are common practices
mostly used in reservoir optimization problems, see e.g., Li and Reynolds (2011);
Do and Reynolds (2013); Xu et al. (2018); Fonseca et al. (2014). The procedure
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(a) Region 1 (b) Region 2

(c) Region 3 (d) Region 4

Figure 4.8: Relative permeability in the four saturation regions of the Olympus
field.

works effectively for simple linear constraints like (3.5), especially in cases where
there is a large number of them. Aside from the gradient quality being affected, as
demonstrated in PAPER II, it is difficult to apply the procedure for complicated
linear or non-linear constraints.

When the gradient quality is poor, this can translate to the need for a large
number of iterations before the optimization algorithm converges to the desired
optimum, as is the case for the 2D analytical Rosenbrock’s problem considered in
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PAPER II. For practical reservoir problems, poor gradient quality resulting from
inappropriate constraint handling techniques will not only cause a large number
of iterations but also lead to a less desirable sub-optimal solution.

The Lagrangian method is by far the most accurate technique for handling any con-
straint (Nocedal and Wright, 2006). Here, the constrained problem is transformed
to an unconstrained subproblem by the introduction of the so-called Lagrange
multiplier. The disadvantage of this method is that it requires constraint gradient
with respective to the input variables and, consequently, adds to the computational
cost of the overall optimization algorithm utilizing it. Zhang et al. (2016) and
Lu et al. (2017) used the augmented Lagrangian method to solve the constrained
optimization problem associated with water flooding. Their works provide an
approximate procedures to estimate the Lagrange multipliers.

Our propose methodology in PAPER II utilizes the exterior penalty(EP) method
to handle constraints. Given a constrained minimization problem involving a
linear objective function 𝑓 : R𝑁𝑢 −→ R, 𝑓 (u) = 𝜁𝑢1, 𝜁 > 0 as shown in Figure
4.9 and an inequality constraint 𝑢1 − 𝜉 ≥ 0 with 𝜉 > 0. In general, the EP method
converts the constrained problem to a sequence of unconstrained sub-problems
where a new objective function called the penalty function 𝑝 𝑓 is defined (Rao,
2019).

The 𝑝 𝑓 is constructed by adding an EP term, which depends linearly on an
increasing sequence of penalty parameters {𝑟𝑘 }∞𝑘=1 (for constraint violation) to 𝑓 .

The penalty term is chosen such that its value will tend to zero at infeasible points
approaching constraint boundaries and tends to infinity as infeasible points moves
away from the constraint boundaries. Consequently, the value of 𝑝 𝑓 also tends
to infinity as the infeasible points moves away from the constraint boundaries.
This behaviour can be seen in Figure 4.9. On the application of unconstrained
minimization algorithm (see Section 4.3) to each 𝑝 𝑓 as 𝑟𝑘 tends to infinity, the
subsequent optimum of 𝑝 𝑓 is found to approach (see Figure 4.9) and eventually
coincides the optimum of 𝑓 .

The EP method is found to be superior to the traditional constrained handling and
outperformed the classical augumented Lagrangian method for the analytical and
water flooding examples considered in Paper II.
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Figure 4.9: Exterior penalty method for a linear function.
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5 Model order reduction for EOR optimization

Previously, the solution method for optimizing the robust reservoir NPV function
(4.12) under the EOR strategy is presented. Also, this can be called model-based
PDE-constrained optimization since evaluating the objective function (or NPV) at
a given input control relies on reservoir simulation, which involves solving some
system of PDEs describing fluid flow in the reservoir of interest. As described
earlier, the solution to PDEs gives the time evolution of the reservoir state, and
hence its response, as a result of the input control. That’s, to every EOR injection
strategy, the reservoir response in terms of fluid production is measured. On this
account, we compute the NPV. When a reservoir model contains large number of
grid blocks or complicated underlying physics, the computation of the reservoir
simulation, and hence the objective function relying on it, becomes demanding.
Since a good quality gradient approximation requires several function evaluations,
the EnOpt method becomes computational inefficient for large PDE-constrained
optimization problems with complicated reservoirs. The proposed approach of
this study on how to deal with the computationally expensive objective function
for an efficient optimization algorithm is discussed.

5.1 Intrusive ROM method for reservoir simulation

Model-based optimization requires multiple reservoir simulations, especially when
computing the approximate gradient using the EnOpt formulation (4.18), which
requires several function evaluations. The costly computation of reservoir simula-
tion has motivated the development of ROM techniques for accurate approximate
of the reservoir simulation.

Given a problem of solving a coupled system of PDEs such as in reservoir simula-
tions, which involves a large number of degrees of freedom, the ROM techniques
fall in the category of methodologies for building an alternative representation of
the problem with significantly fewer degrees of freedom. In other words, they
simplify high-fidelity, complex models by projecting their required behaviors onto
less complicated models.

The ideal goal of ROM techniques is to speed up computation without compro-
mising too much solution accuracy; see Figure 5.1. In this experiment, Durlof-
sky (2010) built a ROM for a two-dimensional reservoir model to predict water
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flooding effect on reservoir states. With the ROM, they were able to speed up
computation by a factor of 3.

(a) Pressure (b) Saturation

Figure 5.1: Relative differences in pressure (left) and absolute differences in
saturation (right) between full order and reduced order model simulations for the
same water flooding input control (Durlofsky, 2010).

Most ROM procedures developed for reservoir simulation utilize POD. The idea
of POD originates from the domain of fluid dynamics where it is used to obtain
low dimensional approximation of turbulent fluid flows (Holmes et al., 2012).
In general, POD simply is the decomposition of a physical field (e.g., pressure
and saturation in reservoir modeling), based on the different variables influencing
its behavior into a discrete set of deterministic orthonormal basis functions. In
another term, POD generates low-order models using snapshots from a forward
simulation with the original high-order model (Van Doren et al., 2006).

In reservoir simulation, POD-based ROM techniques involve one or more high-
fidelity training simulations with the original model at designated input controls,
saving snapshots (reservoir states) at a number of time steps from these simu-
lations, and then constructing a set of basis functions from these snapshots (the
high-fidelity simulation with the original model shall be called the full order
model (FOM) simulation). The basis functions are obtained from a singular value
decomposition (SVD) of the snapshot matrix. In this case, efficiency is attained
because only relatively small basis functions are retained and with linear com-
bination can represent the subsequent reservoir flow solutions or states (Cardoso
and Durlofsky, 2010).
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Van Doren et al. (2006); Heijn et al. (2004); Kaleta et al. (2011); Astrid et al.
(2011) used the above mentioned POD based ROM procedures for different reser-
voir flow applications and demonstrated a quite modest speedup in computations.
It is observed that as non-linearity in the reservoir problem increases, the complex-
ity in terms of number of basis functions required for appropriate approximation
by the ROM techniques increases and thus impact ROM efficiency. For instance,
see Cardoso et al. (2009), where the problem involves strong gravitational effect
and highly nonlinear relative permeability maps. The increase in complexity with
non-linearity makes the standard POD ROM technique less robust and attractive
for a more evolving practical applications.

The limitations associated with the POD technique is relaxed using some lineariza-
tion procedures, the trajectory piecewise linearization (TPWL), first introduced by
Rewienski and White (2003). Here, the POD representation is combined with the
linearization of the discrete-time flow equations (2.17) and the Jacobian around
some saved states, which are generated using the FOM model in one or more
training runs. Moreover, the linearized representation is then projected onto a
low-order subspace. Major contribution of this approach is noticed in the com-
putation speedup because POD is performed with the linearized equations rather
than with the nonlinear equations.

The POD and POD-TPWL based ROM techniques highlighted above have been
successfully utilized with gradient-based optimization algorithms to solve water
flooding problems, see e.g., Van Doren et al. (2006); Durlofsky (2010). In these
cases, the reduced model replaces the FOM model to simulate the reservoir
responses to different input controls for their objective function evaluations. For
example, Figure 5.2 compares the results from different versions of ROM-based
optimization algorithms with that of FOM-based algorithm. However, the problem
with developing ROM using these techniques is that they are highly intrusive
because of the need to access the underlying flow equations. Moreover, efficiency
of intrusive ROM methods for geologically heterogeneous reservoirs with varying
structures and under EOR conditions still remain unclear.

5.2 Non-Intrusive ROM method for reservoir simulation

Many non-intrusive reduced order modeling (NIROM) methods have emerged and
recently utilized for reservoir flow applications; see e.g., Xiao et al. (2016) for
a complete list of references. Here, the term “non-intrusive" implies that the
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Figure 5.2: Comparisons of NPV versus number of iterations for different ROM-
based and FOM-based optimization algorithms for water flooding optimization
problem (Van Doren et al., 2006).

reservoir simulator remains as a black-box with the focus to approximate it.

Over the last decade, non-intrusive surrogate modeling for reservoir simulations
has increased dramatically in popularity due to recent advances in machine learn-
ing (ML) (Nwachukwu, 2018). Many ML algorithms are used to learn linear or
non-linear behavior in reservoir systems to create surrogate models.

For the types of problems usually encountered, ML algorithms are grouped based
on the level of supervision they require to train surrogate models. These groups
include supervised and unsupervised learning. In supervised learning, the algo-
rithm is fed with a set of labeled examples, i.e., inputs and their corresponding
target (or output) values. The ML model is then trained using the examples to
generate a simple function that can map a given input to its target value. Al-
gorithms of this kind include Linear Regression (LR), Random Forests (RFs),
Artificial Neural Networks(ANNs), etc. On the other hand, unsupervised learning
algorithms train models using completely unlabeled examples, and in general,
their main goal is to detect natural groupings in the dataset. Examples of such
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algorithms include k-Means, Hierarchical Clustering(HC) algorithms, etc.

Supervised ML-based surrogate models have been used to predict spatially-varying
reservoir states such as field saturations and pressures, or well responses such as
production rates and bottom-hole pressures under the water flooding strategy and
different geological structures; see e.g., Nwachukwu et al. (2018); Nwachukwu
(2018); Sampaio et al. (2009); Memon et al. (2014); Amini et al. (2012).

In general, to predict reservoir field quantity such as pressures or saturations,
considering a two-phase flow, the trained supervised ML-model is a vector-valued
map of the form;

ML-model : R𝑁𝑢 → R2𝑁𝑔 ·𝑁𝑡 . (5.1)

To every input control U ∈ R𝑁𝑢 the model predicts the reservoir field quantity in
the 𝑁𝑔− grid cells respectively for each fluid present over 𝑁𝑡 time steps. That’s,
each component of the model target corresponds to a fluid field quantity in a given
grid cell per time. The captured information can then be used to estimate the
well’s output of the reservoir. To fit such a model, especially in cases where the
reservoir is discretized into a large number of grid cells, will require a substantial
amount of labeled data to capture the entire reservoir behavior. In such a situation,
the training complexity can be reduced by using the Principal Component Analysis
(PCA) to project the high dimensional input or output space to a much lower-
dimensional one, and then perform training with respect to the low dimensional
space. Instead of using the PCA approach, one can also consider targeting grid
cells, where the geological properties of interest are more influential.

5.3 General application of non-intrusive ROM in EOR optimization

Mainly, in the context of water flooding optimization, the highlighted ROM tech-
niques above have been used to build surrogate models to predict the outcome of
FOM simulation as per the reservoir responses and hence outputs for NPV eval-
uations. Also, several procedures on how to utilize the surrogate model to arrive
at the optimum solutions have been extensively discussed see, e.g., (Nwachukwu,
2018; Durlofsky, 2010). Although this optimization approach still involves an
indirect evaluation of the objective function at each input control, the speedup in
overall computation is found to be very attractive.

Instead of providing surrogate models for indirect objective function evaluations,
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Ahmadi (2015); Cheraghi et al. (2021); Saberi et al. (2021) used ANN to directly
approximate the costly input-output objective function in an EOR flooding settings.
Here, the main focus is on accelerating the evaluation of objective function without
insight on how to use surrogate to solve the underlying EOR flow problem. Golzari
et al. (2015) provides an algorithm to obtain a global surrogate model in a genetic
optimization algorithm. In their formulation, the global model is computed a
priori before the optimization process begins.

Considering reservoir complexity associated with EOR methods, it may be im-
possible to construct a surrogate model that is accurate for the entire objective
function input space. Moreover, if such global model is possible, it would need
extremely huge amount of time for gathering the training dataset and finding the
surrogate parameters. This would translate to losing the focus of accelerating
computation.

To avoid the problem of constructing a globally accurate surrogate model, this
study utilizes Deep Neural Networks (DNNs) to directly and locally build a
surrogate model for the computationally expensive scalar-output EOR objective
function (3.8) defined by (3.3). More so, the procedures on how to appropriately
adapt or enrich the surrogate model while traversing the solution space during
EOR optimization are proposed.

5.4 Deep neural networks

The concept and working principle of ANN follow from the biological neural sys-
tem, where several neurons (approximately 1011) are interconnected and perform
specific tasks from their own experience (Zurada, 1992). A neuron is a processing
unit, which takes some input data to give only one output, for instance, see Figure
5.3. Here, each input 𝑥𝑖 is weighted by a factor 𝑤𝑖 and the weighted sum of inputs
with a bias factor 𝑏 is computed as 𝑎 = 𝑏 + ∑

𝑖 𝑤𝑖𝑥𝑖 . Then a activation function
𝑓 is applied to the result 𝑎 to get the neuronal output 𝑓 (𝑎). Usually, the activa-
tion function is a simple mathematical function that decides whether a neuron is
activated or not. It defines how the weighted sum of the inputs is transformed
into an output from a node or nodes in a layer of the network. Some commonly
used activation functions are identity function, sigmoid function, Tanh function,
Rectified Linear Unit (ReLU) function, etc (Chakraverty and Jeswal, 2021).

The ANNs are built by interconnecting the neurons in layers. In general, the
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Figure 5.3: The neuron (Fukunaga, 1990).

ANN comprises of three layers, namely input, hidden, and output. The input layer
interfaces with the external environment that feeds the the ANN model with input
data. The hidden layer is the intermediate layer between the input and output
layers. ANNs with more than one hidden layers are called DNNs, see e.g., Figure
5.4. The output layer is the last layer that gathers all the information to produce
the desired model output (Chakraverty and Jeswal, 2021; Fukunaga, 1990).

Figure 5.4: Feedforward neural network for the EOR objective function (3.3).

In general, the goal of DNNs is to approximate some arbitrary function

f∗ : R𝑁𝑖𝑛 −→ R𝑁𝑜𝑢𝑡 (5.2)
U ↦−→ f∗(U)
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where 𝑁𝑖𝑛 ∈ N and 𝑁𝑜𝑢𝑡 ∈ N denote the dimension of the function input and
output. Here, a feedforward DNNs defines a map h(U;ΦΦΦ) and learns the value of
the parameter ΦΦΦ that results in the best function approximation of f∗ (Goodfellow
et al., 2016). The DNN is called feedforward because information flows through
the function being evaluated from U (in the input layer) through the intermediate
computations (in the hidden layers) used to define h without feedback. That’s, no
cyclic flow of information.

By setting f∗ in (5.2) to the EOR objective function (3.8), 𝑁𝑖𝑛 = 𝑁𝑢 and 𝑁𝑜𝑢𝑡 =

1. The mathematical formulation of the scalar-valued feedforward DNN model
approximation of 𝐽 denoted by ℎ(U,ΦΦΦ) using the neural network in Figure 5.4 is
as follow.

According to the feedforward DNN in Figure 5.4, let 𝐿 = 4 be the number of
layers; 𝑁𝑢 = 𝑁0, 𝑁1, 𝑁2, and 𝑁𝐿−1 = 1 be the number of neurons in each layer.
The matrix of weights connecting the neurons in layer 𝑖 to 𝑖 + 1 is denoted by
W(𝑖) ∈ R𝑁𝑖−1×𝑁𝑖 , 𝑖 = 1, 2, 3, and b𝑖−1 ∈ R𝑁𝑖 , 𝑖 = 1, 2, .., 𝐿 − 1 are the vector of
biases in the network (note that, in this example 𝑏2 ∈ R). Hence, the model
parameters to learn is given by ΦΦΦ := {(W(𝑖) , b𝑖−1)}𝐿−1

𝑖=1 . Suppose that an 𝑚−th
neuron in layer 𝑖 is connected to an 𝑛−th neuron in layer 𝑖 + 1, the weight of this
connection is denoted as 𝑊 (𝑖)

𝑛𝑚 in the weight matrix W(𝑖) for each 𝑖 = 1, 2, .., 𝐿 −1.
For a given input U = {𝑢𝑖}𝑁𝑢

𝑖=1, and suitable activation function 𝑔 : R −→ R, the
outputs {𝑎 (𝑖+1)

𝑗
}𝑁𝑖

𝑗=1, for each 𝑖 = 1, 2, .., 𝐿 − 1 are computed as follows:

𝑎
(2)
1 = 𝑔(

𝑁𝑢∑︁
𝑚=1

𝑊
(1)
1𝑚 𝑢𝑚 +𝑊

(1)
1𝑏 𝑏0,1), (5.3)

...

𝑎
(2)
𝑁1

= 𝑔(
𝑁𝑢∑︁
𝑚=1

𝑊
(1)
𝑁1𝑚

𝑢𝑚 +𝑊
(1)
𝑁1𝑏

𝑏0,𝑁1), (5.4)

𝑎
(3)
1 = 𝑔(

𝑁1∑︁
𝑚=1

𝑊
(2)
1𝑚 𝑎

(2)
𝑚 +𝑊

(2)
1𝑏 𝑏1,1), (5.5)

...

𝑎
(3)
𝑁2

= 𝑔(
𝑁1∑︁
𝑚=1

𝑊
(2)
𝑁2𝑚

𝑎
(2)
𝑚 +𝑊

(1)
𝑁2𝑏

𝑏1,𝑁2), (5.6)
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and finally,

ℎ(U,ΦΦΦ) := 𝑎
(4)
𝑁3

= 𝑔(
𝑁2∑︁
𝑚=1

𝑊
(3)
𝑁3𝑚

𝑎
(3)
𝑚 +𝑊

(3)
𝑁3𝑏

𝑏2). (5.7)

Here, B𝑤 = (𝑊 (1)
1𝑏 ,𝑊

(1),
2𝑏 ...,𝑊

(2)
𝑁1𝑏

,𝑊
(2)
2𝑏 , ...,𝑊

(2)
𝑁2𝑏

,𝑊
(3)
𝑁3𝑏

) corresponds to the vector
of weights for the biases. In this study, the components of B𝑤 are set to 1,
see Paper IV. For suitable model parameter ΦΦΦ, the resulting DNNs model (5.7)
becomes the desired function approximation of 𝐽. The process of finding suitable
ΦΦΦ such that ℎ(U,ΦΦΦ) ≈ 𝐽 (U) is called training of the neural network. It is a
minimization problem where the objective function is some loss function mea-
suring the deviation of ℎ(U𝜅,ΦΦΦ) from the exact value 𝐽 (U𝜅) for a given set of
input-output training data {U𝜅, 𝐽 (U𝜅)}𝜅∈T and validation data {U𝜅, 𝐽 (U𝜅)}𝜅∈V ,

where T and V are indexing sets. Moreover, the training and validation data are
disjoint and have the same structure. The process of determining how well the
model accurately predicts the output of previously unseen data is called validation
of the neural network. The training procedures of present study can be found in
PAPER IV.

For the DNN minimization problem, the gradient information of the loss func-
tion is computed using the Backpropagation method, for detailed explanation see
Appendix A.3.

In Paper IV, we consider approximating two different structures of the EOR
objective function (3.3), namely scalar- and vector-valued (both with a fixed
geological property). The scalar-valued version remains the same as in (3.3).
In this case, the special form of the scalar output feedforward DNNs in Figure 5.4
(i.e., components of B𝑤 equal 1) is used to build a surrogate model, here denoted
as 𝐽𝑠. The vector-valued version is simply considering the same input space as in
(3.3) but with vector output of the objective function without the discount factor.
That’s

Ĵ𝑣 : R𝑁𝑡 −→ R𝑁𝑡 (5.8)
U ↦−→ Ĵ𝑣 := {𝐽𝑖 (U)}𝑁𝑡

𝑖=1 (5.9)

(see Section 3 for the definition of 𝐽𝑖 and 𝑁𝑡). Each component of the output
corresponds to the objective function value in the 𝑖−th simulation time. Here, the
feedforward DNNs model with components of B𝑤 set to 1 has a vector output of
size 𝑁𝑡 , i.e., h(U,ΦΦΦ) ∈ R𝑁𝑡 . Hence, the true object function value approximation
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at any given input using the DNNs model is obtained by multiplying the vector
output with the vector of discount factors in the simulation time steps.

Furthermore, PAPER IV proposes a novel methodology of locally building and
adapting the DNN models of the expensive EOR objective function (3.3) during
the course of solving the EOR optimization problem (3.3)-(3.6). Each successful
update step in FOM-based optimization method is referred to as outer iteration.
For a given solution initialization, the gradient data of the FOM objective function
𝐽 at this initial point is used to locally build a DNN models 𝐽𝑠 or Ĵ𝑣 (depending
on the structure of 𝐽).

The optimization routine in Algorithm 2 is then performed with a surrogate re-
placing the FOM-based 𝐽. Here, each update step is called an inner iteration.
The quality of the solution obtained after convergence is checked using some
FOM-based criteria and ensures that the optimum obtain by the surrogate is ap-
proximately a local optimum of true objective function (3.3). Should the checking
indicates a tendency for solution improvement or poor approximation, the DNN
model is adapted using FOM gradient quantities and perform the optimization
routine with the newly adapted model. This process is repeated until conver-
gence.

With a polymer EOR optimization problem on a heterogeneous 2D reservoir
model, the proposed Adaptive-ML optimization technique finds improved optimal
solutions with higher NPVs compared to the FOM-based optimization proce-
dures (unlike the POD-based ROM optimization procedures, which leads to a
sub-optimal solution with lesser NPV compared to the FOM-based optimization
method, see Figure 5.2). Moreover, the speed up in computation using our pro-
posed adaptive method is approximately up to a factor of 14.
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6 Conclusion

The EOR models are essential for studying EOR effects to improve oil recovery.
The models can appropriately predict the reservoir dynamic state and hence the
output in terms of fluid production to a given EOR strategy at a point in time.
This thesis studied the EOR modeling process for polymer, Smart water, and
solvent flooding useful for the constrained optimization, value quantification, and
ranking of EOR strategies on relevant oil reservoirs. Furthermore, an efficient and
non-intrusive robust method for computing the gradient of the EOR NPV function
and a technique for the appropriate handling of the underlying constraints during
the EOR optimization procedures are demonstrated. The first section of present
chapter summarizes each chapter of this thesis, while the second section presents
the future outlook of study.

6.1 Summary

EOR modeling and open porous media: This chapter presents the reservoir mod-
eling for chemical and gas EOR methods. Initially, the chapter illustrates the
black-oil model describing the simultaneous flow of three phases (and three
pseudo-components), the analysis of unknown primary variables in the black-
oil model, and closure properties (the three phases include water, oil, and gas).
Then, it presents EOR models, which are extensions of the black-oil model. The
black-oil model consists of three partial differential equations, each representing
the conservation of mass of a phase. Here, mass is transported at a velocity
measured by Darcy’s law. The unknown primary variables such as phase pres-
sure and saturation measure the reservoir states, which change depending on the
input control per time. The closure properties include the saturation and capillary
relations of states.

The chemical EOR models describe polymer and Smart water flooding, while the
gas EOR model describes solvent flooding for given reservoir properties. Each
model is an extension of the black-oil model by appropriate conservation equation
for the additional component 𝛼 ∈ {polymer, Smart water, solvent} and closure
properties. The spatial and time discretization of the black-oil and EOR model
equations lead to non-linear discrete-time algebraic equations whose solution us-
ing the Newton-Raphson method gives the reservoir discrete-time states. The
discretization and algebraic solution toolbox for this purpose are in the OPM-flow
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simulator. Given an EOR setup, the reservoir states, and hence, reservoir outputs
using the appropriate well model, can be computed for an EOR input control
strategy.

EOR optimization: This chapter introduces the mathematical formulation of the
constrained optimization problem associated with EOR methods useful for their
value quantification on relevant oil fields. Here, the objective function is the
reservoir NPV function 𝐽, which measures the economic value of the injected
and produced fluids discounted annually. Indirectly, it is defined on controllable
input vector U with components such as oil and water rate, EOR gas or chemical
concentration, etc. For every U ∈ R𝑁𝑤 ·𝑁𝑡 , assume that X is the reservoir state
function define by

X : R𝑁𝑤 ·𝑁𝑡 −→ R𝑁𝑝ℎ ·𝑁𝑠 𝑓 ·𝑁𝑔𝑐 ·𝑁𝑡 (6.1)
U ↦−→ X(U),

where 𝑁𝑝ℎ, 𝑁𝑠 𝑓 , 𝑁𝑔𝑐, and 𝑁𝑡 are the number of phases, number of state fields,
and number of grid cells in the reservoir. Here, the output of X is obtained by
solving the underlying reservoir flow equations. For a suitable wells function W𝑒

defined by

W𝑒 : R𝑁𝑝ℎ ·𝑁𝑠 𝑓 ·𝑁𝑔𝑐 ·𝑁𝑡 −→ R𝑁𝑤 ·𝑁𝑡 (6.2)
X(U) ↦−→ Y := W𝑒 (X(U)),

which measure the reservoir output in terms of fluid productions at the production
wells, the NPV function 𝐽 quantifies the economic value of the reservoir output
Y as a result of the input vector U ∈ R𝑁𝑤 ·𝑁𝑡 . Therefore, the EOR optimization
problem is to find the best U that maximizes the economic value of the reservoir
outputs. Because there are limited injection and production facilities, possible
optimization constraints defined on the input variables are presented.

Gradient-based optimization method: In this chapter, the gradient-based solution
method for high-dimensional constrained EOR optimization problems is presented.
First, different methods for computing the gradient of the objective function,
namely the adjoint and stochastic methods, are explained. The adjoint method
accurately computes the gradient of 𝐽 but requires access to the reservoir flow
equations. Moreover, the solution method utilizing the adjoint method is prone to
finding local optimum points. The stochastic methods (e.g., the EnOpt method),
on the other hand, utilize input control perturbations and their function evaluations

61



Conclusion

to mathematically approximate the gradient function. They are non-intrusive, i.e.,
require no access to the flow equations.

Further, this chapter introduces the general formulation of the EnOpt method
for gradient computation in deterministic and robust settings. The deterministic
case assumes that the reservoir has known geological properties, while the robust
case considers geological uncertainty quantification. Of interest to this study is
the quantification of the economic benefits of EOR strategies (input controls)
in the robust setting. Hence the accuracy of the EnOpt method, in this case,
is analyzed. Using the robust EnOpt gradient and suitable constraint handling
technique, this chapter presents an optimization algorithm for finding the optimal
solution to the REORO problem. In this case, the algorithm is based on the inexact
line search method. The constraint handling technique uses some admissible set
equivalent (in the sense of some linear transformation) to the original solution
domain. The optimization results are used to quantify and rank the value of
EOR methods for different oil reservoirs designed to mimic a North Sea field.
Moreover, this chapter illustrates the impact on the quality of gradient computed
by the EnOpt method when using the traditional constraint handling technique,
which leads to an inefficient solution method. Because of this, a new approach
for the appropriate handling of underlying constraints when solving the EOR
problem is presented. The technique utilizes the exterior penalty method. Here the
constrained problem is converted into a sequence of unconstrained subproblems
using penalty parameters. By solving sub-problems sequentially using appropriate
unconstrained method, the solutions of sub-problems converge to the optimal
solution of the EOR problem as the penalty parameter increases.

Model order reduction for EOR optimization: For the derivation of an efficient
and improved solution method for EOR optimization problems, this chapter il-
lustrates possible ROM strategies to accelerate the computationally expensive
objective function (3.3). The evaluation of the EOR objective function relies
on costly reservoir simulations, especially with complicated reservoirs. Intrusive
ROM techniques approximate the expensive FOM simulations using POD and
TPWL-based POD to obtain basis functions from the snapshot matrix. Here,
the subsequent solutions of the FOM reservoir simulation are then represented as
linear combinations of the basis functions. In contrast, non-intrusive ROM meth-
ods based on machine learning algorithms for reservoir modeling are presented.
In general, simple mathematical functions are trained to model the linear and
non-linear reservoir behaviors. These ROM methods combined with optimization
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algorithms have been used to solve water flooding problems.

Also, this chapter explores applications of non-intrusive ROM methods for EOR
problems. Here, major researches are concerned with global model approximation
or computation acceleration of the expensive input-output objective function of the
underlying EOR problems. For instance, the problem with using a global model
in the course of the optimization routines is illustrated. Instead of global approx-
imation, this chapter presents a new method for local and direct approximation
of the EOR objective function (3.3) using feedforward DNNs. Also, procedures
(certified using FOM quantities) on how to adapt or enrich the surrogate model
during the optimization routine for the EOR optimization problems (3.3)-(3.6) are
illustrated.

6.2 Research outlook

One main goal of this study is to optimize the EOR objective function (4.12)
formulated based on the EOR models presented in Chapter 2. The proposed EOR
models have been successfully used to simulate EOR effects of polymer, Smart
water, and solvent flooding on oil recovery. The mathematical formulation of EOR
models are based on the assumptions that all hydrocarbon species can be lumped
together as two components, namely gas and oil, with fixed chemical composition
at surface conditions (see Section 2.1). Here, no account for cases where more
than two different compositions or species of reservoir hydrocarbon are required.
For such cases, there is need to consider EOR models, which are extensions of the
compositional model (Coats, 1980) instead of the black-oil model. In this regard,
the proposed EOR optimization problem formulation and solution method in this
study remain applicable.

The focus of this study has been on the robust optimization and value quantifica-
tion of one EOR method over the lifespan of a given oil reservoir at a time. As
future work, it will be interesting to consider optimizing scenarios with combined
EOR methods and compare results with individual EOR strategies. Moreover, this
study utilizes mostly bound constraints on the individual EOR input variables.
Therefore, the investigation of constraints on combinations of input variables of
the same type is an important possibility.

The new constraint technique proposed by this study has been extensively used
for reservoir optimization problems with bound constraints. The reservoirs are
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assumed to have known geological properties. In addition, for analytical problems
with linear constraints, the method proves to be more efficient. As future work,
one can consider the technique for robust constrained optimization problems with
mixed or more complex non-linear constraints.

Finally, this study has successfully developed a new efficient optimization algo-
rithm that utilizes the surrogate of the objective function (3.3) to find the optimum
solution to the underlying EOR optimization. However, a case where the geo-
logical properties are known is applicable with methodology. In practice and as
discussed in Chapter 1, these geological parameters are usually unknown, and
because of this, it is imperative to consider an ensemble of geologies to quantify
this uncertainty. As future work, this algorithm can be extended to the robust
EOR optimization problem, where surrogates are locally created for the objective
function (4.12).
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A Appendix

A.1 Well model

The quantity 𝑄𝛼 in Equation (2.1) denotes well outflux/influx density (equivalently,
the flow rate per unit volume or volumetric source/sink term) of pseudo component
𝛼, evaluated using semi-analytical models (Holmes, 1983; Holmes et al., 1998).
Suppose that the reservoir domain is spatially discretized in such a way that the
injection and production wells are located in different grid blocks as shown in
Figure A.1. Each well is assumed to perforate a single grid block.

Figure A.1: Example of an injector and a producer located in two different grid
blocks (Völcker, 2011).

In addition, if we assume a two-phase flow model of water and oil, the volumetric
source/sink term 𝑄𝛼 := [𝑄inj

𝛼 , 𝑄
prod
𝛼 ] at the wells can be modeled as follow.

Let N be the set of grid blocks, I ⊂ N be the set of grid blocks penetrated
by the injection wells, and P ⊂ N be the set of grid blocks containing the
production wells. Here, the injectors are controlled by volumetric injection rates,
and producers are controlled by bottom hole pressures (BHP)1.

1Bottom hole pressure is the pressure inside the well at reservoir depth (Völcker, 2011).

77



Appendix

A.1.1 Injection wells

For an injector at grid block 𝑖 ∈ I, the source term 𝑄
inj
𝛼,𝑖

(in kg/(m3d)) can be
directly controlled by setting

𝑄
inj
𝛼,𝑖

=

(𝑞inj
𝛼

𝑉

)
𝑖

𝑖 ∈ I, (A.1)

where 𝑞
inj
𝛼,𝑖

is the injected mass of phase 𝛼 per unit time and 𝑉𝑖 is the volume of
𝑖−th grid block. Assuming that the injected fluid is water, then

𝑞
inj
𝑤,𝑖

= (𝜌𝑤𝑞inj
𝑤 )𝑖 𝑖 ∈ I (A.2)

𝑞
inj
𝑜,𝑖

= 0. (A.3)

Here, 𝑞inj
𝑤,𝑖

denotes the volumetric injection rate (in m3/d) of water into the grid
block 𝑖.

A.1.2 Production wells

For grid block 𝑖 ∈ P, the sink term 𝑄
prod
𝛼,𝑖

:= 𝑄
prod
𝛼,𝑖

(𝑝𝛼, 𝑆𝛼) measured in kg/(m3d)
cannot be directly controlled, since the produced fluid is a composition of oil and
water. Here,

𝑄
prod
𝛼,𝑖

=

(𝑞inj
𝛼

𝑉

)
𝑖

𝑖 ∈ I, (A.4)

where

𝑞
prod
𝛼,𝑖

= −
(
WI

𝜌𝛼𝑘𝑟𝛼 (𝑆𝛼)
𝜇𝛼

(𝑝𝛼 − 𝑝bhp)
)
𝑖
. (A.5)

Here, WI𝑖 denotes the well index, which indicates operational production wells
and their interactions with the reservoir model. The Peaceman well index is
expressed as

WI𝑖 =
( 2𝜋

√
𝑘11𝑘22ℎ

ln(𝑟𝑒/𝑟𝑤) + 𝑠

)
𝑖
, (A.6)

where 𝑘11 and 𝑘22 are rock permeability components in the 𝑠1 and 𝑠2 coordinate
axes respectively, ℎ𝑖 is the height of the well (height of grid block 𝑖 in the 𝑠3
direction), 𝑟𝑤 is the wellbore radius, 𝑟𝑒 is the drainage radius or the radial position,
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centered around the well, at which the pressure in the well block, calculated by the
simulator, is the same as the pressure obtained by the semi-analytical model, and
𝑠 is a constant factor added to match theoretical well productivity. Furthermore,
𝑝

bhp
𝑖

in (A.5) is the BHP of the production well in grid block i. For other well
models suitable for reservoirs with three-phase flow and more complicated wells,
see (Chen, 2007; Rasmussen et al., 2021).

A.2 Adjoint model equations and algorithm

These equations follow from the application of the first optimality condition to
the Lagrangian equation (4.6).

𝜕𝐿

𝜕𝜆𝜆𝜆0
= (x0 − x0)T = 0T (A.7)

𝜕𝐿

𝜕𝜆𝜆𝜆𝑖+1
= gT

𝑖+1(u𝑖+1, x𝑖, x𝑖+1, 𝜃𝜃𝜃) = 0T, ∀𝑖 = 0, 1, 2, ..., 𝑁𝑡 − 1 (A.8)

𝜕𝐿

𝜕𝜇𝑖+1
= (y𝑖+1 − h𝜃𝜃𝜃,𝑖+1(u𝑖+1, x𝑖+1))T = 0T, ∀𝑖 = 0, 1, 2, ..., 𝑁𝑡 − 1 (A.9)

𝜕𝐿

𝜕y𝑖+1
=

𝜕𝐽𝑖+1
𝜕y𝑖+1

− 𝜇𝜇𝜇𝑖+1 = 0T, ∀𝑖 = 0, 1, 2, ..., 𝑁𝑡 − 1 (A.10)

𝜕𝐿

𝜕x𝑁𝑡

= 𝜆𝜆𝜆T
𝑁𝑡

𝜕g𝑁𝑡

𝜕x𝑁𝑡

− 𝜇𝜇𝜇T
𝑁𝑡

𝜕h𝜃𝜃𝜃,𝑁𝑡

𝜕x𝑁𝑡

= 0T, (A.11)

𝜕𝐿

𝜕x𝑖
= 𝜆𝜆𝜆T

𝑖

𝜕g𝑖
𝜕x𝑖

+ 𝜆𝜆𝜆T
𝑖+1

𝜕g𝑖+1
𝜕x𝑖

− 𝜇𝜇𝜇T
𝑖

𝜕h𝜃𝜃𝜃,𝑖

𝜕x𝑖
= 0T, ∀𝑖 = 1, 2, ..., 𝑁𝑡 − 1 (A.12)

𝜕𝐿

𝜕x0
= 𝜆𝜆𝜆T

1
𝜕g1
𝜕x0

+ 𝜆𝜆𝜆T
0 = 0T, (A.13)

𝜕𝐿

𝜕u𝑖+1
=

𝜕𝐽𝑖+1
𝜕u𝑖+1

+ 𝜆𝜆𝜆T
𝑖+1

𝜕g𝑖+1
𝜕u𝑖+1

+ 𝜇𝜇𝜇T
𝑖+1

𝜕h𝜃𝜃𝜃,𝑖+1

𝜕u𝑖+1
= 0T, ∀𝑖 = 0, 1, 2, ..., 𝑁𝑡 − 1. (A.14)

The procedures of the adjoint method for computing the gradient of the objective
function (3.3), where the OPM-Flow simulator is used to solve the underlying
reservoir dynamic state equations are summarized in the following Algorithm (3).
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Algorithm 3: Computation of gradient of the objective function (3.3) using
the adjoint method.
input: Prescribe the initial state x0 and input control U = {u𝑖+1}𝑁𝑡−1

𝑖=0 .

output: {∇u𝑖+1𝐽}𝑁𝑡−1
𝑖=0 .

1 begin
2 forward simulation with OPM-Flow
3 Compute the state vector x𝑖 and the corresponding output vector

y𝑖, ∀𝑖 = 1, 2, ..., 𝑁𝑡 using equations (2.19) and (2.21) respectively.
4 adjoint variable computation
5 for 𝑖 = 0, 1, ..., 𝑁𝑡 − 1 do
6 Compute 𝜇𝜇𝜇𝑖+1 ∈ 𝑀𝑀𝑀 using Equations (A.10).
7 backward computation
8 for 𝑖 = 𝑁𝑡 , 𝑁𝑡 − 1, ..., 2, 1, 0 do
9 Compute 𝜆𝜆𝜆𝑖 ∈ ΛΛΛ using Equation (A.11) and (A.12)

10 Compute {∇u𝑖+1𝐽}𝑁𝑡−1
𝑖=0 using Equation (4.7).

A.3 Backpropagation method for gradient computation

To train the DNN model parameter ΦΦΦ in (5.7) for appropriate representation
of the scalar-valued objective function (3.3), this study utilizes the following
unregularized loss function (mean square error loss):

L(ΦΦΦ) = 1
2𝑀

∑︁
𝜅∈T

(ℎ(U𝜅,ΦΦΦ) − 𝐽 (U𝜅))2, (A.15)

where {U𝜅, 𝐽 (U𝜅)}𝜅∈T is the given training data and cardinality of T is 𝑀 . Here,
the training process involves the minimization of (A.15). That’s

min
ΦΦΦ

L(ΦΦΦ). (A.16)

This study utilizes Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)
optimizer (Liu and Nocedal, 1989) to solve the unconstrained optimization prob-
lem (A.16). The L-BFGS method belongs to the family of quasi-Newton meth-
ods, which approximates the BFGS algorithm using a limited amount of computer
memory. It is similar to a gradient descent algorithm with the search direction
computed by preconditioning the gradient of L with curvature information.
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The gradient of L with respect to each components of ΦΦΦ is computed using the
Backpropagation algorithm explained as follows. Let’s assume a ReLU activation
function defined as follows:

𝑔 : R −→ [0, +∞] (A.17)

𝛾 ↦−→ 𝑔(𝛾) := max (0, 𝛾) =
{

0, if 𝛾 ≤ 0
𝛾, if 𝛾 > 0

.

Here, the derivative of 𝑔 is computed as

𝑔′(𝛾) :=

{
0, if 𝛾 < 0
1, if 𝛾 > 0

. (A.18)

Mathematically, at 𝛾 = 0 the derivative of 𝑔 is undefined, but by convention, most
ML implementations take this derivative as zero or any value within the interval
[0, 1].

For the DNN in Figure 5.4, the backpropagation method computes the gradient
of the loss function with respective to the weights W(𝑖) , 𝑖 = 1, 2, 3 by chain
rule, computing the gradient one layer at a time, iterating backward from the last
layer. Given an arbitrary training example (U, 𝐽 (U)), the loss function (A.15)
becomes:

L1(ΦΦΦ) = 1
2
(ℎ(U,ΦΦΦ) − 𝐽 (U))2. (A.19)

Using (5.3) - (5.7) and (A.17) - (A.18) and with assumption that 𝛾 > 0 in (A.18),
the gradient of (A.19) is computed as follows.

Gradient of L1(ΦΦΦ) with respect to the components of W(3) :

𝜕L1

𝜕𝑊
(3)
𝑁3, 𝑗

=
𝜕L1

𝜕𝑎
(4)
𝑁3

𝜕𝑎
(4)
𝑁3

𝜕𝑊
(3)
𝑁3,𝑖

, ∀𝑖 = 1, 2, 3

= (ℎ(U,ΦΦΦ) − 𝐽 (U))︸                 ︷︷                 ︸
𝛿 (𝐿) :=𝛿 (4)

𝑎
(3)
𝑖

. (A.20)
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Gradient of L1(ΦΦΦ) with respect to the components of W(2) :

𝜕L1

𝜕𝑊
(2)
𝑖, 𝑗

=
𝜕L1

𝜕𝑎
(4)
𝑁3

𝜕𝑎
(4)
𝑁3

𝜕𝑎
(3)
𝑖

𝜕𝑎
(3)
𝑖

𝜕𝑊
(2)
𝑖, 𝑗

, ∀𝑖 = 1, 2, .., 𝑁2; 𝑗 = 1, 2, ..., 𝑁1

= (ℎ(U,ΦΦΦ) − 𝐽 (U))𝑊 (3)
𝑁3,𝑖︸                        ︷︷                        ︸

𝛿
(𝐿−1)
𝑖

:=𝛿 (3)
𝑖

𝑎
(2)
𝑗
. (A.21)

Gradient of L1(ΦΦΦ) with respect to the components of W(1) :

𝜕L1

𝜕𝑊
(1)
𝑗 ,𝑘

=
𝜕L1

𝜕𝑎
(4)
𝑁3

𝜕𝑎
(4)
𝑁3

𝜕𝑎
(3)
𝑖

𝜕𝑎
(3)
𝑖

𝜕𝑎
(2)
𝑗

𝜕𝑎
(2)
𝑗

𝜕𝑊
(1)
𝑗 ,𝑘

, ∀𝑖 = 1, 2, .., 𝑁2; 𝑗 = 1, 2, ..., 𝑁1; 𝑘 = 1, 2, ..., 𝑁𝑢

= (ℎ(U,ΦΦΦ) − 𝐽 (U))𝑊 (3)
𝑁3,𝑖

𝑊
(2)
𝑖, 𝑗︸                               ︷︷                               ︸

𝛿
(𝐿−2)
𝑖, 𝑗

:=𝛿 (2)
𝑖, 𝑗

𝑢𝑘 . (A.22)

The quantities 𝛿
(2)
𝑖, 𝑗

, 𝛿
(3)
𝑖

, and 𝛿(4) are usually called the propagation errors. For
𝑀−training examples, it is not hard to evaluate the gradient of L using (A.20) -
(A.22).
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A B S T R A C T

In science and engineering, non-linear constrained optimization has been a useful mathematical technique for
many practical applications. Of interest to us is its applicability in the modeling and prediction of hydrocarbon
reservoir production. In this paper, a new efficient, robust, and accurate optimal solution strategy based on
the exterior penalty function (EPF) method and the adaptive ensemble-based optimization (EnOpt) approach
(with backtracking line-search technique) for non-linear constrained optimization problems is presented. The
purpose of this work is to provide a better user-friendly strategy which mitigates the problem often faced
with the current constraints handling technique utilized when using the EnOpt method to solve constrained
problems of water or EOR flooding. This study notes that the problem contributes to uncertainties in the
gradient computation of the objective function and hence leads to the poor convergence rate of the standard
EnOpt method. In this work, we used the EPF method to transform a given constrained optimization problem
to a sequence of unconstrained subproblems and then sequentially solve the subproblems by unconstrained
EnOpt procedure until convergence to the solution of the original problem. To demonstrate the advantage of
the proposed methodology, we used it to solve analytical 2D bound constrained Rosenbrock’s problem and a
practical high dimensional bound constrained water flooding optimization problem associated with a 2D 5Spot
field and a 3D Reek reservoir field. The numerical results are compared with EnOpt using classical Lagrangian
approach, as well as the traditional EnOpt. Our findings showed that the proposed solution method has a fast
convergence rate and is more accurate and robust.

1. Introduction

In reservoir production optimization, finding an injection/ produc-
tion strategy (with high precision) for a particular oil recovery method
that is economical at the expense of little or no negative environmental
impact for a given reservoir type can be problematic. One reason for
this problem is based on how the uncertain geological parameters in
the reservoir of interest are quantified and utilized in the solution
method for the reservoir optimization problem. Having a good quantifi-
cation of the uncertain parameters using production history in reservoir
studies has been the major contribution of closed-loop reservoir man-
agement (Aanonsen et al., 2009; Jansen et al., 2009; Jung et al., 2018;
Zhang et al., 2019; Mirzaei-Paiaman et al., 2021). Several solution
methods for the non-linear constrained optimization problems (Nocedal
and Wright, 2006), usually encountered in hydrocarbon reservoir fields
have been proposed and used extensively for different applications
(see e.g., Sarma et al. (2005, 2006), Jansen (2011), Li and Reynolds
(2011), Zhou et al. (2013), Xu et al. (2018) and Zhao et al. (2020)). For
instance, of interest to us is the ensemble-based optimization (EnOpt)
method, a popular and robust stochastic optimization technique, first

∗ Corresponding author at: University of Stavanger, 4036, Stavanger, Norway.
E-mail address: micheal.b.oguntola@uis.no (M.B. Oguntola).

introduced in Lorentzen et al. (2006), and further developed into its
current form in Chen et al. (2009, 2010) and Fonseca et al. (2014).
In EnOpt, the uncertainty descriptions in the reservoir are taken into
account. However, the current constraint handling technique often
utilized in the EnOpt method (see Chen et al. (2009)) poses uncertainty
in the optimization result, which thus reduces its accuracy. In this
study, we presented a more accurate means to deal with the constraints
of the optimization problem in EnOpt by using the penalty function (PF)
method (Nocedal and Wright, 2006; Rao, 2019). We demonstrate the
convergence and added advantage (in terms of accuracy compared to
the standard method) of the proposed coupling (of the PF method with
EnOpt) using analytical and practical examples.

In constrained optimization problems, usually, one sorts to find the
best feasible solution (out of a pull of solutions) called the optimal
solution for the control variables that gives the extremum of a given
objective function subject to a set of equality and/or inequality con-
straints. Here, feasibility implies that the underlying constraints are
satisfied. In practice, the design of the control variables could take
different forms. For instance, in reservoir optimization problems, the

https://doi.org/10.1016/j.petrol.2021.109165
Received 17 February 2021; Received in revised form 22 June 2021; Accepted 25 June 2021
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control variables could include the number of well-type (producer
or injector) to be sequentially drilled, their drilling order and loca-
tion, the operational controls (such as the well-rates or bottom hole
pressures over the production period), etc. Whence, the total number
of control variables to be optimized is often of the order 100 and
above. The objective function is usually some reservoir performance
measures (such as net present value (NPV), oil recovery factor (ORF),
etc.) defined on the given set of control variables. Several methods
(with advantages and disadvantages Islam et al., 2020) have been
established to find the optimal solutions to the optimization problems.
They are majorly categorized as gradient-based and derivative-free
techniques (Jesmani et al., 2020). Each of the techniques moves in
the design solution space in a special pattern in search of the optimal
solution. The gradient-based method mainly utilize (either analytically
or by approximation) the derivatives of the objective function with
respect to the control variables to control the search pattern while
the derivative-free methods mostly use the objective function values
in a stochastic way at each optimization iteration. The derivative-
free methods are known to be computationally very efficient for low
dimensional problems but struggle to converge once the dimension of
problem is high (Arouri and Sayyafzadeh, 2020) (for a detailed review
of the derivative-free methods, we refer interested readers to the work
of Chen et al. (2020) and Semnani et al. (2021). Because of the large
size of unknown variables often encounter in reservoir optimization
problems, the gradient-based methods are more suitable to use.

Several gradient-based methods have been devised and utilized to
solve different optimization problems such as well placement and con-
trol problems (Hutahaean et al., 2019; Liu et al., 2019; Sun et al., 2019;
Epelle and Gerogiorgis, 2020). In terms of efficiency and accuracy, the
adjoint method is ranked number one on the list of gradient-based
methods because of its efficient and accurate gradient computation.
However, for practical optimization applications such as the one in the
management of subsurface hydrocarbon reservoirs, the adjoint method
becomes very difficult to implement because (1) the adjoint-based
gradient calculation with respect to the control variables is complicated
and cannot be directly reused for different problems; (2) it requires user
access to the reservoir simulator (Sarma et al., 2005, 2006; Jansen,
2011). To avoid the problem (1) faced with the adjoint method in
well placement optimization, indirect approaches were developed (see,
for e.g. Sarma et al. (2008) and Zandvliet et al. (2008)). However,
problem (2) is inevitable. For these reasons, viable alternative solution
methods that do not rely the adjoint method of gradient calculation
are developed. The simplest one is the finite difference gradient ap-
proximation (FDGA) method which uses finite difference scheme to
approximate each component of the gradient. In this case, at each
iteration, the approximate gradient computation requires 2𝑁𝑢 func-
tion evaluations, where 𝑁𝑢 is the size of the unknown variables to
be optimized. Therefore, for high-dimensional problems, the FDGA
method becomes computationally very expensive to use (Zhou et al.,
2013; Jesmani et al., 2020). Other approximate gradient-based solution
methods that are more efficient than the FDGA have been proposed
in the literature. The most popular ones for reservoir optimization are
the simultaneous perturbation stochastic approximation (SPSA) (Spall,
1998; Spall et al., 2006; Foroud et al., 2018), modified SPSA based on
finite difference method (SPSA-FDG) (Zhou et al., 2013), the stochas-
tic simplex approximation gradient (StoSAG) method Fonseca et al.
(2017), and the ensemble-based optimization (EnOpt) method (Chen
et al., 2010). These solution methods approximate the gradient of
the objective function by simultaneously perturbing all the unknown
variables at the same time, unlike the FDGA method where one variable
is perturbed at a time. Theoretically, it has been proven by Do and
Reynolds (2013) using the steepest descent scheme that a small differ-
ence in gradient computation exists between StoSAG, EnOpt, and SPSA
(as well as its variants such as Gaussian-SPSA) methods. These methods
have gained popularity recently due to their ability to incorporate
uncertainty represented by multiple realizations of the reservoir model

in their approximate gradient computation (Hutahaean et al., 2019;
Jesmani et al., 2020).

The standard EnOpt is an iterative method, formulated based on
a first-order inexact line search (with a simple backtracking tech-
nique Nocedal and Wright, 2006) steepest ascent optimization method
(Snyman and Wilke, 2018). In this case, the approximate gradient of
the objective function (in the line search direction) at each iterate is
computed using a stochastic process. At each iteration, an ensemble
of control vectors is sampled from a multivariate Gaussian distribution
with a known mean (same as the current iterate) and a user-defined
covariance matrix to compute the sample cross-covariance of the ob-
jective function and control variables. Using suitable assumptions, it is
not hard to show that the sample cross-covariance is approximately the
(regularized) gradient of the objective function (Chen et al., 2010; Do
and Reynolds, 2013). Therefore, pressing issues with EnOpt will mainly
be on the quantities (or inputs) that can impact the accuracy of the
estimated gradient needed for a considerable increase in the objective
function value at subsequent optimization iterations. In other words,
uncertainty can be introduced by some quantities in the line search
direction utilized in the EnOpt iterative method. Inappropriate choice
of some of these quantities have proven to affect the convergence rate
of the method. Sometimes, this could translate to the need for a higher
number of iterations for convergence. To mention a few, quantities such
as the ensemble size, sampling strategies, and distribution covariance
matrix (or the perturbation size), etc., have been extensively studied in
the literature. For instance, Fonseca et al. (2015) investigated the im-
pact of ensemble size on the quality of the approximate EnOpt gradients
(by comparing it with the exact adjoint gradient) for the Rosenbrock
optimization problems and for a hydrocarbon reservoir. In their study,
they provided a more computationally efficient and modified version
of EnOpt using hypothesis testing. In other studies by Fonseca et al.
(2014) and Stordal et al. (2016), they found that by systematically
updating the perturbation size (through a method called covariance ma-
trix adaptation (CMA)) at each optimization iteration would effectively
improve the quality of the approximate gradient. Ramaswamy et al.
(2020) evaluated the impact of different sampling strategies on the
performance of the approximate EnOpt gradient for high-dimensional
analytical and robust optimization problems. Their findings suggested
the sampling design to consider in general for gradient approximation
schemes in supersaturated cases, i.e., where the number of perturbation
vector is less than the optimization unknowns. Zhang et al. (2018a,b)
considered a slightly different iterative scheme, the trust region method
with the conjugate gradient method rather than the line search method
often utilized in EnOpt and demonstrated a fast convergence rate with
applications on simple toy and synthetic reservoir problems.

Over recent years, the EnOpt method has received a lot of treat-
ments towards improving its efficiency and accuracy, as mentioned
above. However, in practice, we found that constrained optimization
problems solved using the EnOpt technique were dealt with in an
unconstrained manner. In reservoir optimization problems, there is
usually a set of bound constraints imposed on the designed control
variables. A common way to deal with this is to systematically dis-
card or truncate values of control variables that do not satisfy the
constraints, which leads to inaccurate gradient directions. An alter-
native is to use some transformation (see e.g., Chen et al. (2009)
and Do and Reynolds (2013)) to enforce the constraints on the re-
spective control variables. A transformation is not always advisable,
especially for problems with complex non-linear constraints. Conse-
quently, both truncation or transformation of control variables can
contribute to uncertainties in the computation of the approximate gra-
dient and hence lead to poor convergence to a desired local optimum.
For this reason, we introduce a better and user-friendly approach, the
PF method, to deal with constraints when using the EnOpt method to
solve constrained optimization problems.

The PF method belongs to an important class of solution methods for
constrained optimization problems. It transforms a given constrained
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problem into a sequence of unconstrained subproblems. See Nocedal
and Wright (2006), Sun and Yuan (2006), Deb (2012) and Rao (2019)
for a concrete theoretical overview of the PF method. In each subprob-
lem, there exists a penalty function constructed by adding a penalty
term (which is the constraint violation multiplied by a penalty param-
eter) to the objective function. Usually, the penalty term takes different
forms depending on the type of constraint (equality or inequality). So, if
an estimate of a control variable violates a given constraint, the objec-
tive function is penalized by an amount measured by the penalty term.
More efficiently and robustly, the PF method works by sequentially
solving each subproblem using a suitable unconstrained optimization
procedure. In this case, the optimum found in one subproblem is
utilized as the initial guess for the next unconstrained subproblem.
In the subsequent subproblems, the solution improves gradually and
eventually converges to the desired optimum of the original constrained
optimization problem. However, we noted that the choice (in terms of
initialization and subsequent adaptation) of the penalty parameter in
the penalty term is very crucial to the convergence rate. Our study
adopts the ideas in Nocedal and Wright (2006) and Rao (2019) for
the adaption of the penalty parameter and hence the structure of the
penalty term.

Over time, the PF method has evolved and its approach has been
utilized to solve constrained problems in different areas of science and
engineering. For instance, Zhang et al. (2016) used a variant of the PF
method, the augmented Lagrangian method, and a stochastic gradient
finite difference (SGFD) approach (Yan and Reynolds, 2014) to solve
constrained oil reservoir optimization problem. They showed that the
combined strategies give accurate results based on their comparison of
SGFD and Gaussian distribution Simultaneous Perturbation Stochastic
Approximation (G-SPSA) on simple high dimensional constrained ana-
lytical problem. However, the said SGFD is not very efficient compared
to the EnOpt method because of the higher number of function evalua-
tions and required storage associated with SGFD, especially for complex
high dimensional constrained problems.

In this paper we present an efficient, accurate, and robust extension
of EnOpt, to solve non-linear constrained optimization problems often
encounter in science and engineering. We employ the exterior penalty
function method with bracket operator (for inequality constraints)
penalty term (Deb, 2012) to transform the original constrained opti-
mization problems into a sequence of unconstrained subproblems and
then utilize the adaptive EnOpt method as the unconstrained optimiza-
tion procedure. For simplicity, we refer to the combined strategies
as the EPF-EnOpt method. Our choice of the exterior PF is to allow
for the flexibility of initialization for the unconstrained optimization
procedure. We provide proof of convergence of the EPF method using
suitable assumptions. Further, we demonstrate the use of the method-
ology with a challenging constrained analytical problem and practical
constrained 2D 5-spot and 3D Reek oil reservoir problems and compare
results with the standard EnOpt approach. In addition, we compare
the EPF-EnOpt results with the classical Lagrangian constraint handling
technique (similar to the formulation in Deb (2012) and Lu et al.
(2017)) coupled with the standard EnOpt for the 3D Reek field to
further illustrate the efficiency and accuracy of our proposed method.
The Lagrange multiplier is estimated using a scheme similar to the
one in Snyman and Wilke (2018). The rest of the paper is as follows;
Section 2 discusses the mathematical model of constrained optimization
problems. Section 3 looks at the theory of the exterior PF formulation
for general constrained optimization problems and the derivation of
the adaptive EnOpt procedures. Section 4 builds on previous sections
to formulate the EPF-EnOpt algorithm and discuss its convergence, and
finally, Sections 5 and 6 present applications (with relevant discussion)
and conclusion, respectively.

2. Constrained optimization problem and techniques

The mathematical model of constrained optimization is useful for
many applications in science and engineering. For instance, in hy-
drocarbon reservoir management, resources such as the injecting and
producing facilities are limited in capacities. Therefore, the optimiza-
tion of the objective function, usually a given reservoir performance
index (such as the oil recovery factor or the net present value (NPV),
etc.) is necessarily subject to a well-defined set of constraints on the
designed control variables (such as the water rate of each injecting
well at each control time step, etc.). This is usually referred to as an
optimal control problem during reservoir development, and the goal of
this problem is to find the best (optimal) strategy of control variables
for maximum profit.

In this section, we present a general constrained optimization (max-
imization) problem, often encountered in science and engineering. Let
𝐮 ∈ R𝑁𝑢 be the vector of designed control variables (optimization
unknowns) i.e, 𝐮 = [𝑢1, 𝑢2,… , 𝑢𝑁𝑢

]𝖳 (𝖳 means transpose). Again, the
form of 𝐮 can differ for different problems. In reservoir optimization
problems, the components of 𝐮 can represent the wells (injectors or pro-
ducers) target rates or bottom hole pressures in a specific control time
step during water flooding. The general 𝑁𝑢−dimensional constrained
optimization problem is to find the optimum /best 𝐮 ∈ R𝑁𝑢 that

maximize
𝐮∈R𝑁𝑢

𝐽 (𝐮) (1)

subject to: 𝑔𝑖(𝐮) ≥ 0, ∀𝑖 ∈ I (2)

ℎ𝑗 (𝐮) = 0, ∀𝑗 ∈ E, (3)

where 𝐽 is the objective function (from R𝑁𝑢 into R), 𝑔𝑖 and ℎ𝑗 are
the underlying constraint functions (from R𝑁𝑢 into R respectively), I
and E are the indexing sets for the inequality and equality constraints
respectively. The optimization problem stated in Equations (1) - (3)
becomes unconstrained should I ∪ E = ∅. Since,

max
𝐮∈R𝑁𝑢

𝐽 (𝐮) = − min
𝐮∈R𝑁𝑢

(−𝐽 (𝐮)), (4)

without the loss of generality, the maximization problem (1) - (3)
can be considered as a minimization problem by replacing (1) with
(4). Therefore, the focus of this study is on constrained minimization
problems of the type:

min
𝐮∈R𝑁𝑢

𝑓 (𝐮) (5)

subject to: 𝑔𝑖(𝐮) ≥ 0, ∀𝑖 ∈ I (6)

ℎ𝑗 (𝐮) = 0, ∀𝑗 ∈ E, (7)

where 𝑓 is a continuous objective function. The structure of the con-
straints in Eqs. (6)–(7) varies from one problem to another. In reservoir
optimization problems constraints are often given as linear inequality
constraints. The simplest type are bound constraints where each in-
equality only depends on a single control variable. In this case, suppose
that 𝑢low

𝑖 and 𝑢upp
𝑖 are the lower and upper bounds respectively for each

control variable 𝑢𝑖, the bound constraints are given as:

𝑢low
𝑖 ≤ 𝑢𝑖 ≤ 𝑢upp

𝑖 , ∀𝑖 ∈ 1, 2,… , 𝑁𝑢. (8)

Constraint types called the ‘‘output constraints’’ in the petroleum in-
dustry are also very commonly utilized during petroleum production.
These are non-linear constraints that represent operational limits and
they are usually evaluated using the reservoir simulator. A typical
example is pressure limits for injectors or producers in a model where
the wells are operated using flow rate targets (given by the control
variables). Our primary goal with this paper is handling of bound
constraints, but, it is not limited to this alone as the exterior PF
methodology can be used for complicated constraints (like the out-
put constraints). However, as a common practice, one could let the
reservoir simulator handle the output constraints. Next, we explain two
traditional ways in the literature to handle the bound constraints, and
then we continue with the methodology using the exterior PF.
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2.1. Bound constraints transformation

Suppose that Eq. (8) is the only set of constraints impose on the
control variables in the optimization problem (5)–(7). A given optimal
solution method like the EnOpt method finds an approximate solution
that solves the optimization problem until convergences. At each op-
timization iteration, to ensure that each solution obtained is feasible,
i.e., the underlying constraints are satisfied, either of the following two
procedures is useful.

1. Linear transformation with truncation.
For each 𝑖 ∈ {1, 2,… , 𝑁𝑢}, a bijective linear function is defined
to transform the domain of the control variable 𝑢𝑖 into the closed
interval [0, 1]. That is

𝑇𝑖 ∶ [𝑢low
𝑖 , 𝑢upp

𝑖 ] ⟶ [0, 1], (9)

𝑢𝑖 ⟼ 𝑇𝑖(𝑢𝑖) ∶= �̂�𝑖 =
𝑢𝑖 − 𝑢low

𝑖

𝑢upp
𝑖 − 𝑢low

𝑖

, 𝑢upp
𝑖 ≠ 𝑢low

𝑖

(this transformation follows from the result of a simple algebraic
rearrangement of the inequalities in Eqs. (8), and then divide
through by 𝑢upp

𝑖 − 𝑢low
𝑖 ), where �̂�𝑖 is the transformed control

variable 𝑢𝑖. In this case, the optimization process is carried out
in the interval [0, 1]. Because the linear function (9) is bijective,
its inverse exist. Thus, any value of �̂�𝑖 found can easily be trans-
formed into its equivalent value in the domain [𝑢low

𝑖 , 𝑢upp
𝑖 ] by

using;

𝑢𝑖 = (𝑢upp
𝑖 − 𝑢low

𝑖 )�̂�𝑖 + 𝑢low
𝑖 . (10)

Here, any value of �̂�𝑖 that falls outside the closed interval [0, 1] is
systematically approximated (or truncated) as follows;

�̂�𝑖 =

{
1, if �̂�𝑖 > 1
0, if �̂�𝑖 < 0.

(11)

Vital estimates of control variables for accurate gradient direc-
tions can easily be lost using this truncation. As a consequence,
this can affect the convergence rate of the solution method.

2. Logarithmic transformation.
Here, for each 𝑢𝑖, 𝑖 ∈ {1, 2,… , 𝑁𝑢}, a logarithmic (log) function
is used to transform the domain (excluding the boundary points)
of 𝑢𝑖 to the entire set of real numbers i.e, R = (−∞,+∞). The
transformation is defined by:

𝐿𝑖 ∶ (𝑢low
𝑖 , 𝑢upp

𝑖 ) ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ (−∞,+∞) (12)

𝑢𝑖  ←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝐿𝑖(𝑢𝑖) ∶= �̂�𝑖 = log𝑒
( 𝑢𝑖 − 𝑢low

𝑖

𝑢upp
𝑖 − 𝑢𝑖

)
.

In this case, the optimization procedure occurs in the transformed
domain, (−∞,+∞). Therefore, since [0, 1] ⊂ (−∞,+∞), the trans-
formed optimization unknown, �̂�𝑖 can now fluctuate or vary in a
set of points larger than the optimization domain obtained from
the linear transformation. Similarly, 𝐿𝑖 is a well-defined bijective
function and hence its inverse can be computed as;

𝑢𝑖 =
𝑢upp
𝑖 exp(�̂�𝑖) + 𝑢low

𝑖
exp(�̂�𝑖) + 1

. (13)

Using the log transformation helps to reduce the possibility of
truncation often encounter with the linear transformation. How-
ever, if the initial solution guess is close to the boundary, it is
difficult to find a suitable gradient direction for improvements. In
addition, problems in which the optimal solution of one or more
control variables lie on the boundary of the solution domain can
be hard to solve. It is because of the following simple observation
(from Eq. (12));

�̂�𝑖 =

{
+∞, if 𝑢𝑖 = 𝑢low

𝑖
−∞, if 𝑢𝑖 = 𝑢upp

𝑖

(14)

whereas, neither 𝑢low
𝑖 , 𝑢upp

𝑖 ∈ (𝑢low
𝑖 , 𝑢upp

𝑖 ) nor −∞,+∞ ∈ (−∞,+∞).

Application of any of the described procedures above transforms the
given constrained optimization problem (with only bound constraints)
in Eqs. (5)–(7) to an unconstrained optimization problem. The resulting
unconstrained optimization problem is then solved by suitable uncon-
strained minimization methods (like the ones considered in Li and
Reynolds (2011), Do and Reynolds (2013), Zhao et al. (2013) and
Zhou et al. (2013), etc.) and thus leading to the solution of the initial/
original constrained optimization problem (5)–(7). This has been a
common practice, especially in the petroleum industries.

In addition to the shortcomings mentioned above, the procedures
of handling bound constraints cannot easily be extended to more com-
plicated (possibly non-linear) equality or inequality constraints. Next
in this study, we present a more accurate method to solve a general
constrained minimization problems.

3. Exterior PF formulation

Suppose that a given constrained optimization problem is in the
form of Eqs. (5)–(7). Let  ⊂ R𝑁𝑢 be the domain of feasible solutions.
Hence, R𝑁𝑢∖ is the set of infeasible points. To solve the problem,
first, we transform it into a sequence of unconstrained subproblems,
{𝑃𝑘}∞𝑘=1 using the exterior quadratic PF method. In each subproblem,
𝑃𝑘, 𝑘 = 1, 2,…, is a penalty function defined as follows;

𝑃𝑘 ∶ R𝑁𝑢 × (0,+∞) ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ R (15)

(𝐮, 𝑟𝑘)  ←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑃𝑘(𝐮, 𝑟𝑘) = 𝑓 (𝐮)

+ 𝑟𝑘
(∑
𝑖∈I

(min{𝑔𝑖(𝐮), 0})2 +
∑
𝑗∈E

|ℎ𝑗 (𝐮)|2
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑄(𝐮)

(
we set,𝑃𝑘 ∶= 𝑃𝑘(𝐮, 𝑟𝑘)

)
, where {𝑟𝑘}∞𝑘=1 is an increasing sequence of pos-

itive penalty parameters (which control the iteration of 𝑃𝑘) well-defined
such that

lim
𝑘→+∞

𝑟𝑘 = +∞. (16)

For convenience, we consider a simple sequence of penalty parameters
given by the relation

𝑟𝑘+1 = 𝑐𝑟𝑘, 𝑘 = 1, 2,… , (17)

where 𝑐 ≥ 1 and the first term, 𝑟1 > 0 are carefully selected constants.
Different values of 𝑟1 can mean different number of subproblems to
solve before convergence. Cases of subproblems with exact penalty
functions have been treated extensively (we refer readers to Han and
Mangasarian (1979) and Nocedal and Wright (2006) for more informa-
tion on the impact of the different selection criteria for 𝑟1). For each
𝑖 ∈ I, we define the bracket operator on 𝑔𝑖(𝐮) as

min{𝑔𝑖(𝐮), 0} =

⎧⎪⎪⎨⎪⎪⎩

𝑔𝑖(𝐮), if 𝑔𝑖(𝐮) < 0
(i.e. 𝐮 ∈ R𝑁𝑢∖ (constraint is violated))

0, if 𝑔𝑖(𝐮) ≥ 0
(i.e. 𝐮 ∈  (constraint is satisfied))

(18)

and for each 𝑗 ∈ E,

|ℎ𝑗 (𝐮)| =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−ℎ𝑗 (𝐮), if ℎ𝑗 (𝐮) < 0
(i.e. 𝐮 ∈ R𝑁𝑢∖ (constraint is violated))

0, if ℎ𝑗 (𝐮) = 0
(i.e. 𝐮 ∈  (constraint is satisfied))

ℎ𝑗 (𝐮), if ℎ𝑗 (𝐮) > 0
(i.e. 𝐮 ∈ R𝑁𝑢∖ (constraint is violated)).

(19)

Since ℎ𝑗 is a real-valued function, then |ℎ𝑗 |2 = ℎ2𝑗 , and hence Eq. (19)
can be neglected. However, in a situation where an 𝑙1-penalty function
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definition (Nocedal and Wright, 2006) is used in Eq. (15) or a complex-
valued function ℎ𝑗 is considered, then (19) is retained. In Eq. (15), 𝑄 is
called the exterior penalty term defined based on the given constraints
(6)–(7). When a given estimate of the control vector 𝐮 is infeasible to a
given constraint, it means a violation of the constraint by the estimate.
For such a violation, we penalize the objective function by an amount
measured by 𝑄. Therefore, using Eqs. (18) and (19), it is not hard to see
that for a feasible solution, 𝑄 is zero and for an infeasible solution, 𝑄 is
positive with an amount proportional to the square of the value given
by Eq. (18) (for inequality constraint) and/ or Eq. (19) (for equality
constraints). So, in general:

𝑄(𝐮) ≥ 0, ∀𝐮 ∈ R𝑁𝑢 . (20)

Next, we sequentially (with successively increasing 𝑟𝑘 values) solve the
subproblem

min
𝐮∈R𝑁𝑢

𝑃𝑘(𝐮, 𝑟𝑘), ∀𝑘 = 1, 2,… , (21)

where 𝑃𝑘 is defined by Eq. (15) (and we will often replace the pair
(𝐮, 𝑟𝑘) by 𝐮(𝑟𝑘) in the rest of this section) and 𝑟𝑘 is defined by Eq. (17).
This is an unconstrained optimization problem. Note that 𝑃𝑘 is non-
differentiable at the points 𝐮 that lie on the border between the feasible
and the infeasible domains (because of Eqs. (18) and (19)), that is
its gradient does not exist at the said points. Therefore, unconstrained
numerical solution methods based on analytic gradient computation is
not suitable. The bundle methods solve non-differentiable optimization
problems more effectively and are reliable (Bagirov et al., 2014). How-
ever, for an extensive application, we instead utilize the EnOpt method,
which does not rely directly on analytic gradient. For any 𝑟𝑘, 𝑘 = 1, 2,…,
the EnOpt method finds an approximate minimum point of 𝑃𝑘, denoted
by 𝐮∗𝑘 ∶= 𝐮∗(𝑟𝑘). Usually, 𝑃𝑘 possesses a minimum as a function of
𝐮 in the infeasible region, especially when its initial guess, 𝐮𝑘−1 is
an infeasible point. The sequence of unconstrained minima denoted
by 𝐮∗𝑘, 𝑘 = 1, 2,… converges to the desired minimizer of the original
constrained optimization problem (5)–(7) as 𝑘 → +∞. Therefore, 𝐮∗𝑘
approaches the feasible domain gradually, and eventually lies in the
feasible region (equivalently, |𝑄(𝐮∗𝑘)| → 0) as 𝑟𝑘 → +∞, with 𝑘 → +∞.

The EnOpt method for solving the unconstrained optimization prob-
lem of the type presented in Eq. (21) is next described.

3.1. EnOpt procedures

We consider the problem (21) for any fixed penalty parameter,
𝑟𝑘. The EnOpt is an iterative optimal solution method in which the
user starts by selecting an initial control vector 𝐮1 according to some
rules, and then proceed to find the best approximation to the optimum
solution 𝐮, that minimizes 𝑃𝑘(𝐮, 𝑟𝑘) using a preconditioned gradient
descent method given by

𝐮𝑙+1 = 𝐮𝑙 −
1
𝛽𝑙

𝐂𝑙
𝐮𝐆

𝖳
𝑙

‖𝐂𝑙
𝐮𝐆𝖳

𝑙 ‖2
, ∀𝑙 = 1, 2,… , (22)

until convergence, where 𝑙 is the iteration index; 𝐆𝑙 is the sensitiv-
ity (an approximate gradient) of 𝑃𝑘(𝐮, 𝑟𝑘) with respect to the control
variables 𝑢𝑖, 𝑖 = 1, 2,… , 𝑁𝑢, also called the search direction at the
𝑙th iteration; 𝛽𝑙 is the tuning parameter for iteration step size. It is
used to ensure a sufficient descend along the search direction. Here,
we employ the backtracking line search method (Nocedal and Wright,
2006) to compute (and update when necessary) 𝛽𝑙 at each iteration
(see Algorithm 1). 𝐂𝑙

𝐮 denotes a real symmetric positive definite matrix
defined as the covariance matrix of control variables at the 𝑙th iteration;
‖.‖2 is the 𝑙2− norm. In hydrocarbon reservoir management, it is not
very common to have controls (like water rate and oil rate) at different
wells (injector and producer) to correlate. However, the water rate
(for example) of a particular injection well can be correlated in time
throughout the production period in a water flooding scenario. Because
of this, in Eq. (22), 𝐂𝑙

𝐮 is defined to avoid inappropriate dependence

among control variables. It also ensures possible smoothness, correla-
tion, and long-term fluctuations in the control variables of the same
kind (Do and Reynolds, 2013).

We initialize the covariance matrix, 𝐂𝑙
𝐮 differently at the start of

iteration, 𝑙 = 1 for the different optimization problems considered
in this study. For analytical problem (like the 2D Rosenbrock prob-
lem Snyman and Wilke, 2018) where the 𝑁𝑢−unknowns are distinct
and do not need to be correlated over time, we used a 𝑁𝑢 × 𝑁𝑢−
diagonal matrix where the variances of unknown variables are the
diagonal elements. Suppose that 𝜎2𝑖 , 𝑖 = 1, 2, 3,… , 𝑁𝑢 is the variance of
the unknown control variable 𝑢𝑖, 𝑖 = 1, 2,… , 𝑁𝑢 respectively. The initial
covariance matrix is taken as

𝐂1
𝐮 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝜎21 0 0 ... 0
0 𝜎22 0 ... 0
.
.
.
0 0 0 ... 𝜎2𝑁𝑢

⎞⎟⎟⎟⎟⎟⎟⎟⎠

. (23)

For the water flooding reservoir optimization problem considered
in this study, we initialize the covariance matrix, 𝐂𝑙

𝐮 using a stationary
AR(1) model (similar to the one in Oguntola and Lorentzen (2020)) to
simulate the correlation of control variables at individual well and as-
sume control variables at different wells are not correlated. To achieve
this scenario, we used the following covariance function:

Cov(𝑢𝑚[𝑡], 𝑢𝑚[𝑡 + ℎ]) = 𝜎2𝑚𝜌
ℎ
( 1
1 − 𝜌2

)
, ∀ ℎ ∈ [0, 𝑁𝑡 − 𝑡], (24)

where 𝑢𝑚[𝑡] is the control variable of well 𝑚 = 1, 2,… , 𝑁well at the
control time step 𝑡, 𝑁well is the total number of wells, 𝜎2𝑚 is the variance
for the well 𝑚, and 𝜌 is the correlation coefficient used to introduce
some dependence between controls of individual wells at different
control time steps. Since the AR(1) model is stationary, then 𝜌 ∈
(−1, 1). This formulation (in addition to using the symmetric property
of covariance matrix) gives a block diagonal matrix, 𝐂1

𝐮 of the form

𝐂1
𝐮 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝐂1
𝐮1

0 0 ... 0
0 𝐂1

𝐮2
0 ... 0

.

.

.
0 0 0 ... 𝐂1

𝐮𝑁well

⎞⎟⎟⎟⎟⎟⎟⎟⎠

. (25)

In Eq. (25), 𝐂1
𝐮𝑚 is the user-defined covariance matrix (obtained by

using Eq. (24)) to ensure some degree of correlation and smoothness on
the control vector, 𝐮𝑚 for the well 𝑚 = 1, 2,… , 𝑁well at iteration 𝑙 = 1;
𝐮𝑚 = [𝑢𝑚1 , 𝑢

𝑚
2 ,… , 𝑢𝑚𝑁𝑡

] is the vector of control variables at well 𝑚 for all
the 𝑁𝑡 control time steps. For example, 𝑢𝑚𝑖 denotes the control variable
for well 𝑚 at the 𝑖th control time step. In general, for this problem, the
complete optimization unknowns (control vector) can be written as;

𝐮 = [𝐮1,𝐮2,… ,𝐮𝑁well ]𝖳 = [{𝑢𝑚𝑛 }
𝑁𝑡
𝑛=1 ∶ 𝑚 = 1, 2,… , 𝑁well]𝖳

= [𝑢1, 𝑢2,… , 𝑢𝑁𝑢
]𝖳 (26)

where 𝑁𝑢 = 𝑁well ×𝑁𝑡 is the total number of control variables.
At subsequent iterations, 𝑙 ≠ 1, the covariance matrices in (23) and

(25) are updated using the statistical approach presented in Stordal
et al. (2016) to get an improved covariance matrix, 𝐂𝑙+1

𝐮 . In the EnOpt
community, this process is called the Covariance Matrix Adaptation
(CMA)-EnOpt method (Fonseca et al., 2014) (we shall refer to this
as simply the ‘‘standard EnOpt method’’). Also, in Eq. (22), pre-
multiplying 𝐆𝖳

𝑙 by 𝐂𝑙
𝐮 has shown to produce a better performance, see

e.g. Amari (1998). Indeed, the product 𝐂𝑙
𝐮𝐆

𝑇
𝑙 is the natural gradient for

this problem. It is independent of the problem parameterization and
accounts for gradient uncertainty.

The preconditioned approximate gradient, 𝐂𝑙
𝐮𝐆

𝖳
𝑙 is computed as

follows; At the 𝑙th iteration, we sample 𝑁 control vectors, 𝐮𝑙,𝑗 , 𝑗 =
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1, 2,… , 𝑁 from a multivariate normal distribution with mean equal
to the 𝑙th control vector, 𝐮𝑙, and covariance matrix 𝐂𝑙

𝐮, i.e., 𝐮𝑙,𝑗 ∼
 (𝐮𝑙 ,𝐂𝑙

𝐮), 𝑗 = 1, 2,… , 𝑁 , where 𝑁 is the number of perturbations.
Here, the subscript 𝑗 is used to identify the perturbation vector, 𝐮𝑙,𝑗
and hence separate it from the one obtained by optimization itera-
tion (see Eq. (22)). Each perturbation vector, 𝐮𝑙,𝑗 , 𝑗 = 1, 2,… , 𝑁 is
then coupled with the penalty parameter 𝑟𝑘 to compute the penalty
function values, 𝑃𝑘(𝐮𝑙,𝑗 , 𝑟𝑘), 𝑗 = 1, 2,… , 𝑁 (see Eq. (15)). Next, we
utilize the perturbations to compute the approximate sample cross-
covariance of the control vector 𝐮𝑙 and the objective function 𝑃𝑘(𝑢𝑙 , 𝑟𝑘)
as follows (Fonseca et al., 2017):

𝐂𝑙
𝐮,𝑃𝑘(𝐮,𝑟𝑘)

≈ 1
𝑁 − 1

𝑁∑
𝑗=1

(𝐮𝑙,𝑗 − 𝐮𝑙)
(
𝑃𝑘(𝐮𝑙,𝑗 , 𝑟𝑘) − 𝑃𝑘(𝐮𝑙 , 𝑟𝑘)

)
. (27)

Note that, in this case, we have used the fact that the mean of {𝐮𝑙,𝑗}𝑁𝑗=1
can be approximated by 𝐮𝑙, since

𝐮𝑙,𝑗 ∼  (𝐮𝑙 ,𝐂𝑙
𝐮), 𝑗 = 1, 2,… , 𝑁.

By first order Taylor series expansion of 𝑃𝑘(𝐮, 𝑟𝑘) about 𝐮𝑙, one can
easily show that Eq. (27) is an approximation of 𝐂𝑙

𝐮𝐆
𝖳
𝑙 . Since 𝑟𝑘 is fixed,

then it is not hard to see (by Taylor expansion about 𝐮𝑙) that,

𝑃𝑘(𝐮, 𝑟𝑘) = 𝑃𝑘(𝐮𝑙 , 𝑟𝑘) +
[ 𝜕𝑃𝑘(𝐮𝑙 , 𝑟𝑘)

𝜕𝐮

]𝖳
(𝐮 − 𝐮𝑙) + 𝑂(‖(𝐮 − 𝐮𝑙)‖2)

⟹ 𝑃𝑘(𝐮, 𝑟𝑘) − 𝑃𝑘(𝐮𝑙 , 𝑟𝑘) =
[ 𝜕𝑃𝑘(𝐮𝑙 , 𝑟𝑘)

𝜕𝐮

]𝖳
(𝐮 − 𝐮𝑙) + 𝑂(‖(𝐮 − 𝐮𝑙)‖2). (28)

Pre-multiply both sides of (28) by (𝐮 − 𝐮𝑙) and set 𝐮 = 𝐮𝑙,𝑗 , we get

(𝐮𝑙,𝑗 − 𝐮𝑙)(𝑃𝑘(𝐮𝑙,𝑗 , 𝑟𝑘) − 𝑃𝑘(𝐮𝑙 , 𝑟𝑘))

= (𝐮𝑙,𝑗 − 𝐮𝑙)𝐆𝖳
𝑙 (𝐮𝑙,𝑗 − 𝐮𝑙) + 𝑂(‖(𝐮𝑙,𝑗 − 𝐮𝑙)‖3), ∀𝑗 = 1, 2,… , 𝑁, (29)

where, 𝐆𝖳
𝑙 = 𝜕𝑃𝑘(𝐮𝑙 ,𝑟𝑘)

𝜕𝐮 is the value of the approximate gradient of
𝑃𝑘 at (𝐮𝑙 , 𝑟𝑘) and 𝑂(‖(𝐮𝑙,𝑗 − 𝐮𝑙)‖3) is the remaining terms containing
higher order (≥ 3) of (𝐮𝑙,𝑗 − 𝐮𝑙). Assuming that the magnitude of the
difference, (𝐮𝑙,𝑗−𝐮𝑙) is very small, then with first order Taylor expansion(

by neglecting, 𝑂(‖(𝐮𝑙,𝑗 − 𝐮𝑙)‖3)
)
, we obtain the following from (29).

1
𝑁 − 1

𝑁∑
𝑗=1

(𝐮𝑙,𝑗 − 𝐮𝑙)(𝑃𝑘(𝐮𝑙,𝑗 , 𝑟𝑘) − 𝑃𝑘(𝐮𝑙 , 𝑟𝑘))

≈
( 1
𝑁 − 1

𝑁∑
𝑗=1

(𝐮𝑙,𝑗 − 𝐮𝑙)(𝐮𝑙,𝑗 − 𝐮𝑙)
)
𝐺𝖳
𝑙

⟹ 𝐂𝑙
𝐮,𝑃𝑘(𝐮,𝑟𝑘)

≈ 𝐂𝑙
𝐮𝐆

𝖳
𝑙 . (30)

The iterative scheme of the EnOpt (see Eq. (22)) is repeated until a
specified stopping (or convergence) criteria is satisfied. In this study,
we used the following criteria
|𝑃𝑘(𝐮𝑙+1, 𝑟𝑘) − 𝑃𝑘(𝐮𝑙 , 𝑟𝑘)|

|𝑃𝑘(𝐮𝑙 , 𝑟𝑘)| < 𝜖3, (31)

where 𝜖3 is a specified tolerance.

3.1.1. Backtracking line search method
The backtracking method (similar to the one in Nocedal and Wright

(2006)) considered in this study is demonstrated in Algorithm 1 (the
Armijo condition for sufficient decrease).

Algorithm 1: Procedure for step size selection
Step 1. Fix parameters 𝛼1 ∈ (0, 1) and 𝛼2 ∈ (0, 1).
Step 2. Start iteration with step size 𝜆 ∶= 1

𝛽1
> 0.

while 𝑃 (u𝑙+1, 𝑟𝑘) ≥ 𝑃 (u𝑙 , 𝑟𝑘) − 𝛼2𝜆∇𝖳
u𝑃 (u𝑙 , 𝑟𝑘)g𝑙 do

𝜆 = 𝛼1𝜆
end while

In Algorithm 1, 𝐠𝑙 is the search direction at the 𝑙𝑡ℎ iteration evalu-
ated using,

𝐠𝑙 =
∇𝖳
𝐮𝑃 (𝐮𝑙 , 𝑟𝑘)

‖∇𝖳
𝐮𝑃 (𝐮𝑙 , 𝑟𝑘)‖2

,

∇𝖳
𝐮𝑃 (𝐮𝑙 , 𝑟𝑘) is the regularized approximate gradient of 𝑃 (𝐮𝑙 , 𝑟𝑘) com-

puted using Eq. (27), 𝛼1 is the backstepping or step size contraction
parameter, and 𝛼2 is a given constant. From vector dot product, it is
clear that,

∇𝖳
𝐮𝑃 (𝐮𝑙 , 𝑟𝑘)𝐠𝑙 = ‖∇𝖳

𝐮𝑃 (𝐮𝑙 , 𝑟𝑘)‖2‖𝐠𝑙‖2 cos 𝜃

= ‖∇𝖳
𝐮𝑃 (𝐮𝑙 , 𝑟𝑘)‖2

‖‖‖‖‖
∇𝖳
𝐮𝑃 (𝐮𝑙 , 𝑟𝑘)

∇𝖳
𝐮𝑃 (𝐮𝑙 , 𝑟𝑘)

‖‖‖‖‖2
cos 𝜃

⟹ ∇𝖳
𝐮𝑃 (𝐮𝑙 , 𝑟𝑘)𝐠𝑙 = ‖∇𝖳

𝐮𝑃 (𝐮𝑙 , 𝑟𝑘)‖2, (since 𝜃 = 0) (32)

where 𝜃 is the angle between the vectors ∇𝖳
𝐮𝑃 (𝐮𝑙 , 𝑟𝑘) and 𝐠𝑙. Therefore,

for convenience, we utilize Eq. (32) in Algorithm 1.

4. EPF-EnOpt method

The combined strategies of the Exterior PF method with the EnOpt
method give rise to a more accurate and robust optimal solution
method, the EPF-EnOpt method, for constrained optimization prob-
lems. More concisely, we present the workflow of the EPF-EnOpt
procedures in Algorithm 2.

Algorithm 2: Procedures for solving constrained optimization
problems
Step 1. Given tolerances 𝜖1 > 0 and 𝜖2 > 0, a suitable initial penalty
parameter 𝑟1 > 0, and a growth constant 𝑐 ≥ 1, initial starting point
(feasible or infeasible) u1 ∶= u(𝑟1) ∈ R𝑁𝑢 . Set 𝑘 = 1.
Step 2. Formulate the term, 𝑃𝑘 of the sequence {𝑃𝑘}∞𝑘=1, using
Eq. (15).
Step 3. Find a solution u∗𝑘 ∶= u∗(𝑟𝑘) of the unconstrained mini-
mization problem stated in Eq. (21) using the EnOpt procedures (in
sub-section 3.1).
Step 4. Check the stopping criteria:
if |𝑃𝑘(u∗(𝑟𝑘)) − 𝑃𝑘(u(𝑟𝑘))| < 𝜖1 then

if |𝑄(u∗(𝑟𝑘))| ≤ 𝜖2 then
set, u∗ = u∗𝑘

(
u∗ is the solution of the original problem (5)–(7)

)
and terminate;

else
go to Step 5

end if
else

go to Step 5
end if
Step 5. Select 𝑟𝑘+1 = 𝑐𝑟𝑘,u𝑘+1 = u∗𝑘. Set 𝑘 = 𝑘+1, and turn to Step 2.

4.1. Convergence of the EPF method

In this section, we consider the problem (5)–(7) where 𝑓, 𝑔𝑖,∀𝑖 ∈ I,
and ℎ𝑗 ,∀𝑗 ∈ E are continuous functions defined on R𝑁𝑢 and a sequence
of penalty parameters, {𝑟𝑘}∞𝑘=1 that satisfies the condition of Eq. (16).
Assume that for each 𝑘 = 1, 2,…, 𝐮∗𝑘 ∶= 𝐮∗(𝑟𝑘) is the optimal solution
(or the desired minimizer) of the unconstrained optimization problem
(21). Also, we assume that the desired optimal solution, 𝐮∗ of the
original constrained optimization problem (5)–(7) exist and is unique.
We establish in Lemma 4.1, the basic properties of the exterior PF
formulation, and the proof of convergence of the EPF procedures is
thereafter presented.

Lemma 4.1. Suppose that {𝑟𝑘}∞𝑘=1 is a strictly increasing sequence, i.e. 0 <
𝑟𝑘 < 𝑟𝑘+1,∀𝑘 = 1, 2,…, then

Paper II

117



Journal of Petroleum Science and Engineering 207 (2021) 109165

7

M.B. Oguntola and R.J. Lorentzen

1. 𝑃𝑘(𝐮∗𝑘) ≤ 𝑃𝑘+1(𝐮∗𝑘+1),
2. 𝑓 (𝐮∗𝑘) ≤ 𝑓 (𝐮∗𝑘+1),
3. Q(𝐮∗𝑘) ≥ 𝑄(𝐮∗𝑘+1).

Proof.

1. Using the definition of 𝑃𝑘, 𝑘 = 1, 2,…, in Eq. (15) and since 𝐮∗𝑘
and 𝐮∗𝑘+1 are the minimizers of 𝑃𝑘 and 𝑃𝑘+1 respectively, we have

𝑃𝑘(𝐮∗𝑘) ≤ 𝑃𝑘(𝐮∗𝑘+1), (33)

and

𝑃𝑘+1(𝐮∗𝑘+1) ≤ 𝑃𝑘+1(𝐮∗𝑘). (34)

Because, 𝑟𝑘, 𝑘 = 1, 2,…, is an increasing sequence, then

𝑃𝑘(𝐮∗𝑘+1) ≤ 𝑃𝑘+1(𝐮∗𝑘+1). (35)

It follows from inequalities (33) and (35) that

𝑃𝑘(𝐮∗𝑘) ≤ 𝑃𝑘+1(𝐮∗𝑘+1), ∀𝑘 = 1, 2,… , (36)

Hence, the proof of Statement 1.
2. Divide both sides of inequalities (33) and (34) by 𝑟𝑘 and 𝑟𝑘+1,

respectively to obtain,
1
𝑟𝑘

𝑃𝑘(𝐮∗𝑘) ≤ 1
𝑟𝑘

𝑃𝑘(𝐮∗𝑘+1)

⟹ 1
𝑟𝑘

(
𝑓 (𝐮∗𝑘) + 𝑟𝑘𝑄(𝐮∗𝑘)

) ≤ 1
𝑟𝑘

(
𝑓 (𝐮∗𝑘+1) + 𝑟𝑘𝑄(𝐮∗𝑘+1)

)

(using the definition of 𝑃𝑘)

⟹ 1
𝑟𝑘

𝑓 (𝐮∗𝑘) +𝑄(𝐮∗𝑘) ≤ 1
𝑟𝑘

𝑓 (𝐮∗𝑘+1) +𝑄(𝐮∗𝑘+1) (37)

and
1

𝑟𝑘+1
𝑃𝑘+1(𝐮∗𝑘+1) ≤ 1

𝑟𝑘+1
𝑃𝑘+1(𝐮∗𝑘)

⟹ 1
𝑟𝑘+1

(
𝑓 (𝐮∗𝑘+1) + 𝑟𝑘+1𝑄(𝐮∗𝑘+1)

) ≤ 1
𝑟𝑘+1

(
𝑓 (𝐮∗𝑘) + 𝑟𝑘+1𝑄(𝐮∗𝑘)

)

⟹ 1
𝑟𝑘+1

𝑓 (𝐮∗𝑘+1) +𝑄(𝐮∗𝑘+1) ≤ 1
𝑟𝑘+1

𝑓 (𝐮∗𝑘) +𝑄(𝐮∗𝑘). (38)

Adding inequalities (37) and (38) and rearranging the result, we
get
( 1
𝑟𝑘

− 1
𝑟𝑘+1

)
𝑓 (𝐮∗𝑘) ≤

( 1
𝑟𝑘

− 1
𝑟𝑘+1

)
𝑓 (𝐮∗𝑘+1). (39)

Recall from the definition of 𝑟𝑘 that for each 𝑘 = 1, 2,…,

𝑟𝑘 < 𝑟𝑘+1 ⟹ 1
𝑟𝑘

> 1
𝑟𝑘+1

⟹ 1
𝑟𝑘

− 1
𝑟𝑘+1

> 0. (40)

Using (40), we can easily divide both sides of the inequality (39)
by ( 1

𝑟𝑘
− 1

𝑟𝑘+1
) to obtain

𝑓 (𝐮∗𝑘) ≤ 𝑓 (𝐮∗𝑘+1). (41)

Thus the statement 2. holds for any 𝑘 = 1, 2,… ,.
3. Adding inequalities (33) and (34) gives

𝑃𝑘(𝐮∗𝑘) + 𝑃𝑘+1(𝐮∗𝑘+1) ≤ 𝑃𝑘(𝐮∗𝑘+1) + 𝑃𝑘+1(𝐮∗𝑘)
⟹ 𝑃𝑘(𝐮∗𝑘) − 𝑃𝑘+1(𝐮∗𝑘) −

(
𝑃𝑘(𝐮∗𝑘+1) − 𝑃𝑘+1(𝐮∗𝑘+1)

) ≤ 0

⟹ 𝑟𝑘𝑄(𝐮∗𝑘) − 𝑟𝑘+1𝑄(𝐮∗𝑘) −
(
𝑟𝑘𝑄(𝐮∗𝑘+1) − 𝑟𝑘+1𝑄(𝐮∗𝑘+1)

) ≤ 0

⟹ (𝑟𝑘 − 𝑟𝑘+1)𝑄(𝐮∗𝑘+1) ≥ (𝑟𝑘 − 𝑟𝑘+1)𝑄(𝐮∗𝑘). (42)

Since, 𝑟𝑘 < 𝑟𝑘+1 ⟹ 𝑟𝑘 − 𝑟𝑘+1 < 0, then dividing both sides of
the inequality (42) by (𝑟𝑘 − 𝑟𝑘+1), a negative value, reverses the
inequality sign and hence leads to

𝑄(𝐮∗𝑘) ≥ 𝑄(𝐮∗𝑘+1), (43)

This completes the proof of Statement 3. Also, this confirms
the fact that for any initial infeasible solution 𝐮∗𝑘, the next ap-
proximate solution 𝐮∗𝑘+1 obtain by the Algorithm 2 is indeed an
improved solution (less infeasible), and would eventually lead to
feasible solution as 𝑟𝑘 → +∞ as shown in the next theorem. □

Theorem 4.2 (Convergence Theorem). Let  be the set of feasible solutions
to the given constrained optimization problem (5)–(7). Suppose that the
penalty function 𝑃𝑘(𝐮, 𝑟𝑘) is sequentially minimized for a strictly increasing
sequence of penalty parameters 𝑟𝑘, 𝑘 = 1, 2,…, i.e., for any fixed 𝑘, the
optimal solution, 𝐮∗𝑘 of the subproblem (21) becomes the initial starting
point for the subproblem at 𝑘 = 𝑘 + 1, with 𝑟𝑘+1 > 𝑟𝑘. If the sequence
of the unconstrained minima, {𝐮∗𝑘}

∞
𝑘=1 converges, then its limit is the desired

optimum, 𝐮∗ ∈  of the original constrained problem (5)–(7) and 𝑄(𝐮∗𝑘) →
0 as 𝑘 → +∞ respectively.

Proof. Assume that {𝐮∗𝑘}
∞
𝑘=1 has a convergent subsequence whose limit

is 𝐮∗ in R𝑁𝑢 . Hence,

lim
𝑘→+∞

𝐮∗𝑘 = 𝐮∗. (44)

We need to show that 𝐮∗ is feasible to the original constrained optimiza-
tion problem (5)–(7) and that 𝐮∗ = 𝐮∗. Since for each 𝑘 = 1, 2,… , 𝐮∗𝑘 is
the optimal solution of 𝑃𝑘(𝑢, 𝑟𝑘), then the following holds:

𝑓 (𝐮∗𝑘) ≤ 𝑓 (𝐮∗𝑘) + 𝑟𝑘𝑄(𝐮∗𝑘) = 𝑃𝑘(𝐮∗𝑘, 𝑟𝑘) ≤ 𝑃𝑘(𝐮∗, 𝑟𝑘) = 𝑓 (𝐮∗)

(since, 𝑄(𝐮∗) = 0) (45)

⟹ 𝑓 (𝐮∗𝑘) ≤ 𝑓 (𝐮∗). (46)

Also from the inequality (45), we have

𝑟𝑘𝑄(𝐮∗𝑘) ≤ 𝑓 (𝐮∗) − 𝑓 (𝐮∗𝑘) ⟹ 𝑄(𝐮∗𝑘) ≤ 1
𝑟𝑘

(
𝑓 (𝐮∗) − 𝑓 (𝐮∗𝑘)

)
(47)

Taking the limit as 𝑘 → +∞ on both sides of the inequality (47), we
get

lim
𝑘→+∞

𝑄(𝐮∗𝑘) ≤ lim
𝑘→+∞

1
𝑟𝑘

(
𝑓 (𝐮∗) − 𝑓 (𝐮∗𝑘)

)
= 0 (since, lim

𝑘→+∞
1
𝑟𝑘

= 0)

⟹ lim
𝑘→+∞

𝑄(𝐮∗𝑘) ≤ 0 ⟹ 𝑄( lim
𝑘→+∞

𝐮∗𝑘) ≤ 0

⟹ 𝑄(𝐮∗) ≤ 0 (using Eq. (44)). (48)

It follows from (20) and (48) that

𝑄(𝐮∗) = 0. (49)

Hence, 𝐮∗ is feasible (i.e., 𝐮∗ ∈ ) to the original problem (5)–(7). By
the definition of 𝐮∗, then,

𝑓 (𝐮∗) ≤ 𝑓 (𝐮∗) (50)

Since 𝑓 is continuous and monotone increasing with respect to 𝐮∗(𝑟𝑘)
(according to Statement 3 of Lemma 4.1), taking the limit as 𝑘 → +∞
on both sides of (46) gives

lim
𝑘→+∞

𝑓 (𝐮∗𝑘) = 𝑓 (𝐮∗) ≤ 𝑓 (𝐮∗) (51)

Using inequalities (50) and (51) lead to

𝑓 (𝐮∗) = 𝑓 (𝐮∗). (52)

Thus, 𝐮∗ is the desired optimal solution of the original problem (5)–(7).
This concludes the proof of the fact that the sequence {𝐮∗𝑘}

∞
𝑘=1 converges

to the optimal solution 𝐮∗ as 𝑘 → +∞. □

5. Applications

In this section, we utilize numerical results to compare the con-
vergence rate and accuracy of the standard EnOpt method with our
proposed EPF-EnOpt method. We examine the two optimal solution
methods by solving one analytical problem, and one simple water
flooding constrained optimization problem.
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Fig. 1. The contour plot of the objective function in Eq. (53) and its global minimum
point in the feasible region.

Example 1

Here, we consider a classical constrained 2D Rosenbrock’s optimiza-
tion problem (also called the Hock & Schittkowski problem 1 (Hock
and Schittkowski, 1981; Snyman and Wilke, 2018)) with an additional
constraint on the variable 𝑢1. The problem is given as follows.

min
𝐮∈R2

𝑓 (𝐮) = 100(𝑢2 − 𝑢21)
2 + (1 − 𝑢1)2 (53)

subject to: 𝑢1 ≥ 0. (54)

𝑢2 + 1.5 ≥ 0, (55)

where 𝐮 = [𝑢1, 𝑢2]𝖳. By considering a point 𝐮 = [0, 1]𝖳 in the feasible
region, we see that the Hessian of the objective function 𝑓 (𝐮) given by

∇2𝑓 (𝐮) =
[
1200𝑢21 − 400𝑢2 + 2 −400𝑢1

−400𝑢1 200

]
(56)

has a negative eigenvalue (and thus, the Hessian of 𝑓 is not positive
definite). This shows that the function is non-convex in the feasible
region, and hence in the entire R2. Because of this, convergence to the
global minimizer of the problem (53)–(55) using a numerical minimiza-
tion procedure can be difficult to achieve. However, an approximation
can be found. In theory, the global minimum value of the problem
(53)–(55) is at the point 𝑢1 = 1 and 𝑢2 = 1 as shown in Fig. 1.

First, we apply the standard adaptive EnOpt method of Section 3.1
and the linear transformation of subsection 2.1 to find the solution
of problem (53)–(55). In this case, we choose an initial guess 𝐮1 =
[−2, 0.5]𝖳 (see Fig. 2(b)), the initial step size, 𝛽−11 is set to 0.5. The
initial perturbation size for each variable is taken as 0.05 (in other to
compute the initial covariance matrix (23)), and the initial step size for
covariance adaptation is set to 0.1. Here, we used 𝑁 = 100 perturbation
control vectors at each iteration and set 𝜖3 = 1.0×10−6 as the tolerance
for convergence. The backtracking parameters, 𝛼1 & 𝛼2 are chosen as
0.5 and 0.001 respectively. The maximum number of trials for the
process of backtracking (see Algorithm 1) is set to 20. To use the linear
transformation, we set the upper limit, 𝑢upp

𝑖 = 5 for each variable 𝑢𝑖, 𝑖 =
1, 2. After 600 iterations, the standard EnOpt procedure converges
(for which |𝑓 (𝐮𝑙+1) − 𝑓 (𝐮𝑙)| ≤ 𝜖3|𝑓 (𝐮𝑙)| is sufficiently satisfied) to the
minimum point as shown in Fig. 2(a). Fig. 2(b) further illustrates, on a
contour plot, the convergence of the corresponding objective function
values (in blue dots) at optimization iterations to its minimum (in red
dot) in the feasible region.

However, the large iterations required before convergence to the
solution of problem (53)–(55) by using the standard EnOpt method
can be significantly reduced by using the proposed EPF-EnOpt method
presented in Algorithm 2. To utilize the EPF-EnOpt Algorithm 2 for this

example, first, we construct the general term of the penalty function
sequence in (15) as follows:

𝑃𝑘(𝐮(𝑟𝑘)) = 𝑓 (𝐮(𝑟𝑘)) + 𝑟𝑘𝑄(𝐮(𝑟𝑘)), 𝑘 = 1, 2,… ,

= 100(𝑢2(𝑟𝑘) − 𝑢1(𝑟𝑘)2)2 + (1 − 𝑢1(𝑟𝑘))2

+ 𝑟𝑘
(
(min{𝑢1(𝑟𝑘), 0})2 + (min{(𝑢2(𝑟𝑘) + 1.5), 0})2

)
, (57)

where 𝐮(𝑟𝑘) = [𝑢1(𝑟𝑘), 𝑢2(𝑟𝑘)]𝖳 denotes a value of 𝐮 at a given penalty
parameter 𝑟𝑘 (Note that, the subproblem associated with (57) according
to Eq. (21) shall simply be called the ‘‘subproblem 𝑃𝑘’’). We set the
initial penalty parameter, 𝑟1 and the growth constant, 𝑐 to 1.5 respec-
tively and choose 𝜖1 = 1.0 × 10−6 and 𝜖2 = 1.0 × 10−6. Similarly, we
utilize an infeasible initial guess 𝐮(𝑟1) = [−2, 0.5]𝖳 (see Fig. 3(b)). For
the purpose of results comparison, same initialization (as before) of
parameters in the EnOpt procedures are used (in Step 3 of Algorithm
2). In addition, we normalize each variable 𝑢𝑖(𝑟𝑘), 𝑖 = 1, 2 using the
same linear transformation of subsection 2.1 (without truncation) with
𝑢upp
𝑖 = 5,∀𝑖 = 1, 2. However, we note that normalizing the variables

this way is not compulsory as one could use a fixed constant or
the maximum of the variables. On the application of Algorithm 2,
the resulting successive minimum points (including the initial starting
point) of the penalty function terms (or subproblems) in the sequence
𝑃𝑘, 𝑘 = 1, 2, 3,… , 24 are presented in Fig. 3(a). Here, we found that,
the Algorithm 2 converges to the minimum of problem (53)–(55) after
the solution of the subproblem 𝑃24. The total number of unconstrained
minimization iterations (from the starting point) before convergence is
52 as shown in Fig. 4. Fig. 3(b) depicts the corresponding values (in
blue dots) of the objective function (53) at the initial guess and the
obtained minimum points of subproblems {𝑃𝑘}24𝑘=1 respectively. From
the numerical optimization results of this example, we see that the EPF-
EnOpt method gives a faster convergence rate and also more accurate
results than the standard EnOpt method.

For this example, the large number of iterations required by stan-
dard EnOpt method is seen as the effect of the truncation (see Eq. (9))
that often occurs with the perturbed vectors (sampled from a Gaussian
distribution with adapted covariance matrix and the approximate so-
lution (at each iteration) as the mean) and the approximate solution
respectively. As pointed out in Section 2.1, the truncation affects the
quality of the approximate gradient and hence a small step size is
required for a decrease of the objective function. This continues at each
iteration until convergence and hence the reason for a large number of
iterations. Also, with different perturbation size (ranging from 0.0001
to 0.5) for each unknown variable and different updating step sizes
for the covariance matrix (ranging from 0.001 to 0.1) we found no
improvement in the number of iterations required for the standard
EnOpt convergence.

However, in EPF-EnOpt method, infeasible perturbed vectors and
iterates are kept. Instead of truncation due to infeasibility (as it is done
in the standard EnOpt), the violations of the constraints are handled by
the penalty term. By doing this resolves the large number of iterations
required by the standard EnOpt to 52.

Example 2

In this case, we consider a practical 𝑁𝑢−dimensional constrained
optimization problem of water flooding for a single (i.e we assume
no geological uncertainty) 5-Spot oil reservoir (see Fig. 5). This is
a synthetic 2D reservoir model with three-phase flow (including oil,
water and gas) solved using the OPM-Flow simulator (opm-project.org).
The model has a central injection and four production wells spatially
distributed in a five-spot pattern as shown in Fig. 5. The reservoir model
is uniformly discretized into 50 × 50 grid cells, with 𝛥𝑥 = 𝛥𝑦 = 100
m. On average, it has approximately 30% porosity with heterogeneous
permeability map. The initial reservoir pressure is 200 bar. The initial
average oil and water saturations are 0.6546 and 0.3454 respectively
(i.e, no free gas). The original oil in place (OOIP) is 4.983 × 106 sm3.
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Fig. 2. Minimization of the constrained 2D Rosenbrock problem (53)–(55) using the Standard EnOpt method. (a) Plot of values of control variables versus iteration count. (b) The
contour plot of the objective function (53) and its values (in blue dots) at different estimates of the control variables from optimization iterations.

Fig. 3. Minimization of the constrained 2D Rosenbrock problem (53)–(55) using the EPF-EnOpt Algorithm. (a) Plot of the unconstrained minimum points of subproblems in the
penalty function sequence. (b) The contour plot of the objective function (53) and its values (in blue dots) at the initial guess and minimum points of subproblems.

Fluid properties is close to that of a light oil reservoir. The viscosity (in
cP) for saturated oil at varying bubble point pressure is in the interval
[0.1, 0.56] and viscosity of water is 0.01 cP. The densities of oil and
water are respectively 732 kg∕m3 and 1000 kg/m3. The optimization
problem is to find the best/ optimum 𝐮 ∈ R𝑁𝑢 that maximizes the net
present value (NPV) defined by the objective function:

𝐽 (𝐮) =
𝑁𝑡∑
𝑖=1

𝑟𝑜𝑄𝑜,𝑖(𝐮) + 𝑟𝑔𝑄𝑔,𝑖(𝐮) −
(
𝑟𝑤𝑖𝑄𝑤,𝑖(𝐮) + 𝑟𝑤𝑝𝑄𝑤𝑝,𝑖(𝐮)

)

(1 + 𝑑𝜏 )
𝑡𝑖
𝜏

, (58)

subject to

𝑢low
𝑖 ≤ 𝑢𝑖 ≤ 𝑢upp

𝑖 , ∀𝑖 = 1, 2,… , 𝑁𝑢, (59)

where 𝑁𝑡 is the total control time steps; 𝑖 is the index for time step; 𝑑𝜏 is
the discount rate (decimal %) for a given period of time 𝜏 (days), and 𝑡𝑖
is the cumulative time (days) starting from the beginning of production
up to the 𝑖th time step; the scalars 𝑟𝑜, 𝑟𝑤𝑖, 𝑟𝑤𝑝, and 𝑟𝑔 denote the price of
oil, the cost of handling water injection and production, and the price
of gas production (in USD/sm3) respectively. Let 𝛥𝑡𝑖 be the length of
time (days) between 𝑡𝑖 and the 𝑡𝑖−1 time steps. In Eq. (58), 𝑄𝑤,𝑖 is the
total water injection (sm3) over the time interval 𝛥𝑡𝑖; 𝑄𝑜,𝑖, 𝑄𝑤𝑝,𝑖, and
𝑄𝑔,𝑖 denote the total oil, water, and gas productions (sm3) over the time
interval 𝛥𝑡𝑖. Also, the quantities 𝑄𝑜,𝑖, 𝑄𝑤,𝑖, 𝑄𝑤𝑝,𝑖, and 𝑄𝑔,𝑖 are primary
variables which depend on the control vector 𝐮 at each control time step
and their respective numerical values are the results of water flooding
reservoir simulation based on a given well configuration data provided

by some optimization procedures. We simulated water flooding on the
5-Spot field using the OPM-Flow simulator. In Eq. (59), 𝑢low

𝑖 and 𝑢upp
𝑖

are the imposed lower and upper bounds on the control variable 𝑢𝑖, ∀𝑖 =
1, 2,… , 𝑁𝑢.

In this example, the injection well is controlled by water injection
rate at each control time step. The lower and upper bounds for water
injection rate are set to 0 sm3∕day and 1000 sm3∕day respectively.
Each production well is controlled by reservoir fluid production rate
with a lower limit of 0 sm3∕day and upper limit of 250 sm3∕day.
Bottom hole pressure (BHP) limits are imposed on the wells, specifically
maximum 500 bar for the injector and minimum 150 bar for each
producer. The simulation period for the reservoir is 1500 days and
the control time step is set to 30 days. Therefore, the optimization
unknown control vector 𝐮 has a total of (1 + 4) × 50 = 250 components
(control variables). The values of economic parameters utilized for this
optimization problem is given by Table 2.

The constrained water flooding optimization (maximization) prob-
lem (58)–(59) is treated as a minimization problem by using the
transformation in Eq. (4). Next, we seek a solution to the transformed
problem, first by using the standard EnOpt approach (see Section 3.1)
coupled with the linear transformation (with truncation) of Section 2.1.
Here, we select an initial feasible guess, 𝐮1 of control vector (denoted
by the ‘‘ref control’’ in Fig. 6). Namely, a constant 500 sm3∕day for
the water injection rate at the injection well, and 150 sm3∕day for the
reservoir fluid production rate target at each production well. The val-
ues of other optimization parameters considered in the EnOpt algorithm
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Fig. 4. Plot of cumulative number of unconstrained minimization iterations versus the
𝑘𝑡ℎ subproblem for the 2D Rosenbrock problem.

Fig. 5. Porosity distribution of the five-spot field.

are given in Table 1. After 20 iterations, the standard EnOpt algorithm
converges (when |𝐽 (𝐮𝑙+1) − 𝐽 (𝐮𝑙)| ≤ 𝜖3|𝐽 (𝐮𝑙)| is sufficiently satisfied) to
a suboptimal solution (represented by the ‘‘standard EnOpt’’ in Fig. 6)
of the problem (58)–(59). The maximum NPV reached is 3.855×108 (in
USD) (see the ‘‘standard EnOpt’’ in Fig. 7(a)).

Furthermore, we used the proposed EPF-EnOpt method (in Algo-
rithm 2) to solve the equivalent minimization problem associated with
problem (58)–(59) in other to demonstrate its added advantage in
the hydrocarbon industries. First, we rewrite the bound constraint
inequalities (59) in the preferred standard form (of inequalities (6)) as
follows:

𝑔1(𝑢𝑖) ∶= 𝑢𝑖 − 𝑢𝑙𝑜𝑤𝑖 ≥ 0, and 𝑔2(𝑢𝑖) ∶= 𝑢𝑢𝑝𝑝𝑖 − 𝑢𝑖 ≥ 0, ∀𝑖 = 1, 2,… , 𝑁𝑢.

(60)

By using Eqs. (58) and (60), the general PF term associated with
problem (58)–(59) is then formulated as follows:

𝑃𝑘(𝐮(𝑟𝑘)) = 𝑓 (𝐮(𝑟𝑘)) + 𝑟𝑘𝑄(𝐮(𝑟𝑘)), 𝑘 = 1, 2,… ,

= 𝑓 (𝐮(𝑟𝑘))

+ 𝑟𝑘
(𝑁𝑢∑
𝑖=1

(min{𝑔1(𝑢𝑖(𝑟𝑘)), 0})2 +
𝑁𝑢∑
𝑖=1

(min{𝑔2(𝑢𝑖(𝑟𝑘)), 0})2
)
, (61)

where 𝑓 (𝐮(𝑟𝑘)) = −𝐽 (𝐮(𝑟𝑘)). Next, we set the initial penalty parameter,
𝑟1 and the growth constant, 𝑐 to 0.1 and 10 respectively, and 𝜖1 =
1.0 × 10−5 and 𝜖2 = 1.0 × 10−6. The initial guess of solution is taken
as 𝐮(𝑟1) ∶= 𝐮1 (see the ‘‘Ref control’’ in Fig. 6). We used the values
of parameters in Table 1 required for the unconstrained minimization
procedures. We apply the linear transformation (without truncation) of
subsection 2.1 to normalize each unknown variable 𝑢𝑖, 𝑖 = 1, 2,… , 𝑁𝑢
(and hence the associated constraint function). On the application
of Algorithm 2, the resulting limit of the solutions of subproblems
𝑃𝑘, 𝑘 = 1, 2, 3,… , 26 (equivalently the solution of problem (58)–
(59)) is represented by the ‘‘EPF-EnOpt’’ in Fig. 6. The corresponding
value of the objective function (58) at the solution of subproblem,
𝑃𝑘, 𝑘 = 1, 2,… , 26 is denoted by the ‘‘EPF-EnOpt’’ in Fig. 7(a). In
this case, the Algorithm 2 is seen to converge to a better suboptimal
solution of problem (53)–(55) at the 24th subproblem with a total
of 51 unconstrained optimization iterations as shown in Fig. 8. The
maximum NPV obtained is 4.420 × 108 (in USD). Therefore, the EPF-
EnOpt method yields an increase of 14.596% in NPV over the standard

Fig. 6. Comparison of the initial (ref) and optimal solutions from standard EnOpt and EPF-EnOpt methods for the optimization problem (58)–(59). Plots (a) to (d) represent the
control (production rate) variation profiles at the four producing wells and (e) denotes the control (injection rate) variation profile at the injection well I1.
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Fig. 7. (a) Comparison of the change in NPV with iteration (for standard EnOpt) or penalty function term (or subproblem). We see that the objective function is flatting out for
both methods, which indicate that the stopping criteria is sufficient for this problem. (b) Comparison of the field oil production total (FOPT) from reference (Ref), standard EnOpt,
and EPF-EnOpt controls.

Table 1
Standard EnOpt parameters.
Parameter Value

Initial step size (𝛽−11 ) 0.3
Initial stepsize for covariance adaptation (−) 0.1
step size contraction (𝛼1) 0.5
Constant (𝛼2) 0.01
Initial control-type variance (𝜎𝑚 ,∀𝑚 = 1, 2,… , 5) 0.001
Number of perturbation control vector (𝑁) 50
Constant correlation factor (𝜌) 0.5
Tolerance for EnOpt convergence (𝜖3) 10−6

Table 2
Economic parameters.

Parameter Value Unit

Oil price (𝑟𝑜) 500 USD/sm3

Price of gas production (𝑟𝑔 ) 0.15 USD/sm3

Cost of water injection or production (𝑟𝑤𝑖 , 𝑟𝑤𝑝) 30 USD/sm3

Annual discount rate (𝑑𝜏 ) 0.1 −

EnOpt approach. Also, Fig. 7(b) compares the field oil production total
from operating the field with the solutions (or control strategies) of the
EPF-EnOpt and standard EnOpt methods respectively and the reference
control. The total field oil production by the standard EnOpt and EPF-
EnOpt solutions are 9.006 × 105 sm3 and 1.036 × 106 sm3 respectively. It
is an increase of approximately 14.983% in oil production. Hence the
benefit of the EPF-EnOpt method, as shown in this example is in its
better and more accurate result than the traditional EnOpt scheme.

To illustrate that our proposed solution method is not significantly
dependent on the state of random number generation (for objective
function gradient computation), we compare its performance (in terms
of change in NPV and change in cumulative unconstrained iterations)
and that of standard EnOpt with different random seed numbers.
Fig. 9(a) shows the changes in the maximum NPV obtained from using
the EPF-EnOpt and standard EnOpt methods with different seed num-
bers. On average, the maximum NPV for the EPF-EnOpt and standard
EnOpt methods are approximately 4.447 × 108 and 3.857 × 108 (same
as initially obtained) respectively. The corresponding total number of
iterations carried out with the different seed numbers are shown in
Fig. 9(b). The average number of iterations for the standard EnOpt
method is 20 and for the EPF-EnOpt method is 51.

Example 3

To further explore the benefit of the proposed EPF-EnOpt method,
we consider a more realistic industrial standard 3D oil reservoir model

Fig. 8. Plot of cumulative number of unconstrained minimization iteration versus the
𝑘𝑡ℎ subproblem for the 5-Spot problem.

(the Reek field designed by Equinor). The associated 𝑁𝑢−dimensional
constrained optimization problem of water flooding associated with the
Reek field is given by Eqs. (58)–(59). The reservoir model is synthetic
with three-phase flow (including oil, water and gas). It is defined on an
irregular grid system of dimension 40×64×14. There are total of 35840
grid cells with distinct sizes. The model is divided into UpperReek,
MidReek, and LowerReek zones with six faults and varying porosity and
permeability. The model has five production and three injection wells
as shown in Fig. 10. Two of the injectors are positioned in the water
saturated zones, while the five producers and one injector are spatially
distributed throughout the oil containing region based on engineering
intuition. Fluid properties are similar to that of light oil. On average, it
has approximately 15% porosity with heterogeneous permeability map.
The original oil in place (OOIP) is 4.831 × 107 sm3. The initial average
oil, water, and gas saturations are 0.1658, 0.8342, and 0 respectively. The
viscosity (in cP) for saturated oil at varying bubble point pressure is in
the interval [0.09, 1] and viscosity of water is 0.01 cP. The densities of
oil and water are respectively 732 kg∕m3 and 1000 kg/m3.

In this example, the injection well is controlled by water injection
rate at each control time step. The lower and upper bounds for water
injection rate are set to 0 sm3∕day and 10000 sm3∕day respectively.
Each production well is controlled by reservoir fluid production rate
with a lower limit of 0 sm3∕day and upper limit of 5000 sm3∕day.
Bottom hole pressure (BHP) limits are imposed on the wells, specifically
maximum 500 bar for the injector and minimum 200 bar for each
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Fig. 9. (a) Comparison of the change in NPV from the standard EnOpt and EPF-EnOpt methods with random seed. (b) Comparison of the total number of iteration from the
standard EnOpt and EPF-EnOpt methods with random seed.

Fig. 10. The initial saturation map for oil, water and gas of the Reek field.

producer. The simulation period for the reservoir is 1110 days and the
control time step is set to 30 days. The optimization unknown control
vector 𝐮 has a total of (5+3)×50 = 296 components (control variables).
Thus, the constrained waterflooding optimization problem is to find the
optimal control vector, 𝐮 = {𝑢𝑖}296𝑖=1 that maximizes the NPV in Eq. (58)
subject to the constraints in Eq. (59). Here, the NPV is optimized using
the economic parameters listed in Table 2. First, we seek a solution
to the optimization problem by using the standard EnOpt approach
coupled with the linear transformation (with truncation). In this case,
we utilize feasible initial guess, 𝐮1 of control vector (denoted by the
‘‘ref control’’ in Fig. 11) provided by Equinor. The values of other
optimization parameters considered in the EnOpt algorithm are given
in Table 1.

In 55 iterations, the standard EnOpt algorithm is seen to converge
(when |𝐽 (𝐮𝑙+1) − 𝐽 (𝐮𝑙)| ≤ 𝜖3|𝐽 (𝐮𝑙)| is sufficiently satisfied) to a sub-
optimal solution (represented by the ‘‘standard EnOpt’’ in Fig. 11) of
the problem (58)–(59). The maximum NPV reached is 4.285 × 109 (in
USD) (see the ‘‘standard EnOpt’’ in Fig. 12(a)). Similar to Example 2,
we used the proposed EPF-EnOpt method (in Algorithm 2) to solve the
subproblems (61) associated with the Reek field waterflooding problem
for comparison with the standard EnOpt. We set the initial penalty
parameter, 𝑟1 and the growth constant, 𝑐 to 10 and 1.2 respectively, and
𝜖1 = 1.0× 10−5 and 𝜖2 = 1.0× 10−6. The initial guess of solution is taken
as 𝐮(𝑟1) ∶= 𝐮1 (see the ‘‘Ref control’’ in Fig. 11). The same values of
parameters in Table 1 are utilized for the unconstrained minimization
procedures. Other parameters or transformations not mentioned are the
same as before in Example 2. By applying Algorithm 2, the resulting
limit of the solutions of subproblems 𝑃𝑘, 𝑘 = 1, 2, 3,… , 58 (equivalently
the solution of problem (58)–(59)) is denoted by the ‘‘EPF-EnOpt’’ in
Fig. 11. The corresponding value of the objective function (58) at the
solution of subproblem, 𝑃𝑘, 𝑘 = 1, 2,… , 58 is represented by the ‘‘EPF-
EnOpt’’ in Fig. 12(a). Here, the Algorithm 2 converges to a better

suboptimal solution of problem (58)–(59) at the 59th subproblem with
a total of 116 unconstrained optimization iterations as shown in Fig. 13.
The maximum NPV obtained is 4.556×109 (in USD). Therefore, the EPF-
EnOpt method yields an increase of 6.324% in NPV over the standard
EnOpt approach.

To further illustrate the efficiency and accuracy of the EPF-EnOpt
method, we utilized the classical Lagrange function (LGF) method
to handle constraints coupled with the standard EnOpt, to solve the
optimization problem and compare results with the EPF-EnOpt. The
Lagrange function associated with the constrained water flooding opti-
mization problem of the Reek field (using Eqs. (58)–(59)) is given by :

𝐿(𝐮, 𝜆𝜆𝜆𝑘, 𝑟𝑘) = 𝑓 (𝐮) + 𝑟𝑘
(𝑁𝑢∑
𝑖=1

2∑
𝑗=1

[
(min{

𝜆𝑗,𝑖
2𝑟𝑘

+ 𝑔𝑗 (𝑢𝑖), 0})2 − (
𝜆𝑗,𝑖
2𝑟𝑘

)2
])

, (62)

where 𝜆𝜆𝜆𝑘 ∶= [{𝜆𝑘𝑗,𝑖}
𝑁𝑢
𝑖=1],∀𝑖 = 1, 2 is the Lagrangian multiplier for the

2𝑁𝑢 constraint functions and 𝑟𝑘 is the penalty parameter. For each 𝑘th
subproblem, we estimate the Lagrangian multiplier using:

𝜆𝜆𝜆𝑘+1 ∶= min{𝜆𝜆𝜆𝑘 + 2𝑟𝑘𝐠(𝐮), 0}, 𝐠 = [𝑔1, 𝑔2], (63)

and the penalty parameter 𝑟𝑘 is updated using Eq. (17). Using the same
optimization parameters, initialization, and convergence tolerance as
in the EPF-EnOpt method and initial multiplier components, 𝜆𝑗,𝑖 =
0, we sequentially solve (using the standard EnOpt) for the optimal
solution of the Lagrangian in Eq. (62). After 66 subproblems, the La-
grangian converges to a suboptimal value as depicted by ‘‘LGF-EnOpt’’
in Fig. 12(a) with a total of 113 unconstrained iterations as shown by
‘‘LGF-EnOpt’’ in Fig. 13. The limit of solutions of the subproblems is
shown by ‘‘LGF-EnOpt’’ in Fig. 11 (equivalently a suboptimal solution
to the original constrained optimization problem). The maximum NPV
obtained is 4.400×109 (in USD) which is less than that of the EPF-EnOpt
method by 3.55%. The need for the LGF-EnOpt to estimate the Lagrange
multiplier in addition to the penalty parameter shows that the method
requires more subproblem iterations.

Fig. 12(b) compares the field oil production total from develop-
ing the Reek field with the solutions (or control strategies) of the
EPF-EnOpt, LGF-EnOpt, standard EnOpt methods respectively, and the
reference control. The total field oil production by the EPF-EnOpt, LGF-
EnOpt, and standard EnOpt solutions are 1.091×106 sm3, 1.054×106sm6,
and 1.037 × 106 sm3 respectively. The EPF-EnOpt solution gives an
increase of approximately 5.207% and 3.510% in oil production over
the standard EnOpt and LGF-EnOpt solutions respectively. Also, we
compare the corresponding field water production from the three solu-
tions in Fig. 12(c). The total field water production from the EPF-EnOpt,
standard EnOpt, and LGF-EnOpt solutions are 3.338 × 106 sm3, 3.949 ×
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Fig. 11. Comparison of the initial (ref) and optimal solutions from standard EnOpt, EPF-EnOpt, and LGF-EnOpt methods for the constrained optimization problem (58)–(59)
associated with the Reek field. Plots (a) to (e) represent the control (production rate) variation profiles at the five producing wells and (f) to (h) denote the control (injection rate)
variation profile at the three injection wells.

106 sm3, and 3.152 × 106 sm3 respectively. It is approximately 15.47%
and 20.18% in water production by the EPF-EnOpt and LGF-EnOpt
solutions less than the standard EnOpt method. Hence, the EPF-EnOpt
has the potential to find a better optimal solution that will not only
increase oil production but also reduced field water production. This
is similar to the solution obtained by using the LGF-method in Zhang
et al. (2016).

6. Conclusion

In this study, a new optimal solution strategy, the EPF-EnOpt
method, for non-linear constrained optimization problems (such as the
one of hydrocarbon field management) is formulated. The strategy
leans on the exterior penalty function method and adaptive EnOpt
scheme (with backtracking technique). Because of the inappropriate
gradient computation arising from using the traditional truncation of
control variables to honor of the underlying constraints, we utilized the
exterior PF method to transform the constrained optimization problem
to a sequence of unconstrained subproblems. We used the adaptive
EnOpt method to sequentially solve the subproblems, which eventually
leads to the desired solution of the original constrained optimization
problem.

Further, the proposed method is formulated in such a way that
mixed (involving equality and inequality) constraint problems can be
solved efficiently and robustly and also its performance (in terms
of convergence rate and accuracy) is compared with the standard

EnOpt method. The optimization results of the analytical 2D con-
strained Rosenbrock problem (see Example 1) showed that the EPF-
EnOpt method has a faster convergence rate (and hence more efficient).
The solutions of the practical 𝑁𝑢− dimensional constrained water
flooding optimization problem associated with the 2D 5Spot field (see
Example 2) and 3D Reek field (see Example 3) showed that the method
is more accurate than the standard EnOpt approach. In addition to in-
creasing oil production, the EPF-EnOpt methods can provide a solution
with less impact (in terms of water production) on the environment
compared to the standard EnOpt with traditional constraint handling
techniques (as shown in Fig. 12(c)). For the Reek field we also com-
pared the EPF-EnOpt method with the classical Lagrangian constraint
handling technique. The results showed higher NPV was obtained with
the EPF-EnOpt.

It is noted that the minima of subproblems obtained lie within
the feasible region of interest because of our choice of parametric
values (irrespective of using infeasible (see Example 1) or feasible (see
Example 2) solution initialization). However, this is not always true as
different sets of values of parameters such as penalty parameter, growth
constant, optimization parameters (such as the number of perturbation
and initial step size, and backtracking constants) can change trend of
solutions. Also, the size of subproblems and number of optimization
iterations before convergence is found to significantly rely on the values
assigned to these parameters. Therefore, careful selection of parametric
values is the key if strictly feasible solutions are required and for fast
convergence rate.
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Fig. 12. (a) Comparison of the change in NPV with iteration (for standard EnOpt) or penalty term or Lagrang e function (or subproblem). (b) Comparison of the field oil production
total (FOPT) from reference(Ref), standard EnOpt, and EPF-EnOpt controls.(c) Comparison of the field water production total (FWPT) from standard EnOpt and EPF-EnOpt controls.

Fig. 13. Plot of cumulative number of unconstrained minimization iteration versus the
𝑘𝑡ℎ subproblem for the Reek field problem.

For future reference, the present methodology will be used to solve
robust constrained optimization problems of oil reservoirs with un-
certain geological parameters. In this paper, we considered bound
constraint optimization problems. However, solution of optimization
problem with mixed or more complex linear or non-linear constraints
are possible. Also, there is room to carry out sensitivity analysis with
influential parameters on the EPF-EnOpt method.
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Abstract

In this contribution, we develop an efficient surrogate modeling frame-
work for simulation-based optimization of enhanced oil recovery, where
we particularly focus on polymer flooding. The computational approach
is based on an adaptive training procedure of a neural network that
directly approximates an input-output map of the underlying PDE-
constrained optimization problem. The training process thereby focuses
on the construction of an accurate surrogate model solely related to the
optimization path of an outer iterative optimization loop. True evalua-
tions of the objective function are used to finally obtain certified results.
Numerical experiments are given to evaluate the accuracy and efficiency
of the approach for a heterogeneous five-spot benchmark problem.
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2 Adaptive ML based surrogate modeling for PDE-constrained optimization

1 Introduction

Water flooding remains the most frequently used secondary oil recovery
method. However, the percentage of original oil in place left after the cessa-
tion of water flooding in many reservoir fields is estimated to be as high as 50
- 70% [1–3]. The reduced performance of water flooding leading to the sizable
leftover of oil has been linked to many factors such as the presence of unfavor-
able mobility ratios (due to heavy oil), high level of heterogeneity (in porosity
and permeability), etc., in the reservoir [4]. For these reasons, enhanced oil
recovery (EOR) methods are employed to improve the performance of water
flooding in order to increase oil production and minimize environmental stress.

Polymer flooding is a matured chemical EOR method, suitable for heavy oil
reservoir development, with over four decades of practical applications [5, 6]. It
involves injecting long chains of high-molecular-weight soluble polymers along
with water flooding. The polymer EOR mechanism includes reducing mobility
ratios of the oil-water system and early water breakthrough in the reservoir by
increasing the viscosity of injected water and consequently improving vertical
and aerial sweep efficiencies of the injected fluid.

The EOR process of polymer flooding can significantly increase the oil pro-
duction [6]. However, compared with water flooding, the operational cost and
the risk associated with polymer flooding are higher. More so, since injecting
more than necessary polymer into the reservoir can lead to insignificant oil
increment, it is imperative to optimize the injection strategy of polymer flood-
ing for field application to avoid unnecessarily high operational costs with no
profit.

Conventionally, a reservoir simulation model is combined with a numerical
optimization technique to determine an optimal control (including water rates,
polymer concentrations of injection wells, liquid rates, or bottom hole pressures
of production wells) for polymer flooding. The aim is to maximize a given
reservoir performance measure (RPM), such as the total oil production or the
net present value (NPV) function over the reservoir life. The simulation model
is usually a complex numerical reservoir simulator that requires substantial
data accounting for geology and geometry of the reservoir or rock and fluid
properties. In this study, the model simulates the oil reservoir response (inform
of fluid production) to a given polymer flooding control per time. On this
account, we estimate the RPM of a given control strategy.

Further, the complexity of a reservoir simulator leads to a high computa-
tional effort for simulating a given polymer flooding scenario. It contributes
to the inefficiency of gradient-based solution techniques (e.g., the ensemble-
based optimization (EnOpt) method) for polymer EOR optimization problems,
since the (approximate) gradient of the objective functional with respect to
the control variables requires several function evaluations, with each relying
on a time-consuming polymer model simulation [7–9]. More so, for large-
scale polymer problems discretized into a large number of grid cells, a single
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model evaluation may take several hours to complete. For this reason, we pro-
pose a machine-learning-based approach to approximate the computationally
demanding objective functional.

In classical approaches of model order reduction or surrogate modeling, the
expensive evaluation of the objective functional due to the PDE constraints is
replaced by an a priori trained surrogate model that can be efficiently evalu-
ated with respect to the optimization parameters. In this work, however, we
make use of an adaptive surrogate modeling approach, where a surrogate model
is constructed during the outer optimization loop through adaptive learning
that is targeted towards an accurate input-output map in the vicinity of the
chosen parameters during the optimization loop. The overall algorithm thus
combines costly full order model (FOM) evaluations, training of machine learn-
ing (ML) based surrogate models, as well as evaluations of the successively
trained ML models. In model reduction for parameterized systems [10], such
adaptive enrichment approaches have been recently proposed and successfully
applied in the context of PDE constrained parameter optimization, e.g., in
combination with trust-region optimization [11–13]. Recently, in [14, 15] first
ideas were presented to combine online enrichment for reduced-order models
(ROMs) with machine learning-based surrogate modeling. In this contribution,
we use feedforward deep neural networks (DNNs) to obtain surrogate mod-
els of the underlying input-output map that directly map the optimization
parameters to the output of the objective functional.

Artificial neural networks also gained attention in the context of enhanced
oil recovery in recent years, see [16–18], for instance. However, these approaches
mainly focus on accelerating the evaluation of the costly objective function
without providing a way to solve polymer EOR optimization problems using
the proposed surrogate models. In [19], the authors describe an algorithm
to obtain a global surrogate model that is applied as a replacement for the
objective functional in a genetic algorithm. The global approximation of the
objective is computed a priori before applying the optimization routine. In
[20], artificial neural networks are employed to facilitate the decision process
for a specific EOR method.

Concerning acceleration of PDE-constrained optimization in general, DNNs
are, for instance, used in [21] to replace costly simulations within the opti-
mization loops by evaluations of surrogate models. The main idea of the
ISMO algorithm described in [21] is to run multiple parallel optimization rou-
tines starting from different initial guesses and to construct DNN surrogate
models using training data collected at the final iterates of these optimiza-
tion algorithms. The training data is computed by costly evaluations of the
exact objective functional (involving the solution of PDEs). In contrast, the
optimization routines use the respective surrogate model to speed up the
computations. Iteratively, a surrogate model is built to approximate the true
objective functional near local optima. The approximation quality also serves
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as the stopping criterion of the algorithm. Another approach involving physics-
informed deep operator networks to accelerate PDE-constrained optimization
in a self-supervised manner has recently been suggested in [22].

The idea of not having a global surrogate model, but only approximations
of the objective functional that are locally accurate, is also one of the main
motivations for our algorithm. In contrast to the procedure in [21] described
previously, we iteratively construct DNN surrogate models tailored towards
the objective function along a single optimization path. We consider only a
single initial guess but check for convergence by taking into account the true
objective functional. This stopping criterion certifies that the resulting control
is approximately a (local) optimum of the true objective functional and not
only of the surrogate. Further, we do not assume that the derivative of the
DNN surrogate with respect to its inputs is available but reuse the EnOpt
procedure when optimizing with the surrogate model.

The remainder of this article is organized as follows. In Section 2 we intro-
duced the polymer flooding model for EOR and formulate an optimization
problem for the economic value of the reservoir response. Section 3 introduces
a classical ensemble based optimization algorithm based on a FOM approxi-
mation of the polymer flooding model. Feedforward DNNs to approximate the
input-output map are introduced in Section 4. In Section 5, we finally present
and discuss our new adaptive FOM-ML-based optimization algorithm, which
is evaluated numerically for a five-spot benchmark problem in Section 6. Last
but not least, a conclusion and outlook is given in Section 7.

2 Optimization of polymer flooding in
enhanced oil recovery

The problem of predicting the optimal injection strategy of the polymer EOR
method can be formulated as a constrained optimization problem. The setup
involves solving a maximization problem in which the objective function, the
RPM, is defined on a given set of controllable variables. For the polymer EOR
method, a complete set of control variables includes the concentration (and
hence volume size of the polymer) and control variables (such as water injection
rate, oil production rate, and/or bottom hole pressure for the injecting or
producing wells) for water flooding over the producing lifespan of the reservoir.

2.1 Polymer flooding model

As mentioned in the introduction, the optimization process is usually per-
formed on a simulation model of the real reservoir [23]. Here, we consider a
polymer flooding simulation model, which is an extension of the black-oil model
with a continuity equation for the polymer component [9, 24]. The black-oil
model is a special multi-component multi-phase flow model with no diffusion
among the fluid components [25]. It assumes that all hydrocarbon species are
considered as two components, namely, oil and gas at surface conditions, and
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can be partially or entirely dissolved in each other to form the oil and gas
phases. Further, there is an aqueous phase that consists of only one component
called water.

For brevity, we first state the polymer flooding model without mentioning
the dependence on the controls and geological parameters explicitly. These
dependencies are described in more detail after depicting the model. Hence, in
what follows, we assume that fixed sets of controls and geological parameters
are given.

In the polymer model, usually, it is assumed that polymer forms an addi-
tional component transported in the aqueous phase of the Black-oil model and
has no effect on the oil phase. We identify those quantities associated with
the water, oil, gas, and polymer components with subscripts W, O, G, and
P. In general, the polymer model consists of the following system of partial
differential equations:

∂

∂t
(φbWsW) +∇ · bWvW = qW, (1a)

∂

∂t
φ(bOsO + rOGbGsG) +∇ · (bOvO + rOGbGvG) = qO, (1b)

∂

∂t
φ(bGsG + rGObOsO) +∇ · (bGvG + rGObOvO) = qG, (1c)

∂

∂t

[
φ(1− sipv)sW +

ρrca
bWc

(1− φ)
]

+∇ · vP = qW, (1d)

where φ is the rock porosity, sα, bα, qα, and vα denote the (unknown) satu-
ration, inverse formation-volume factor (depending on the respective density
ρα), volumetric source (flow rate per unit volume), and Darcy’s flux of phase
α ∈ {W,O,G}, and rOG and rGO denote the oil-gas and gas-oil ratios. The
quantities vP, ca, sipv, and c denote the Darcy’s flux, adsorption concentration,
inaccessible pore volume, and concentration of the polymer solution, and ρr is
the density of the reservoir rock.

In addition to the system (1), empirical closure equations for relative per-
meabilities and capillary pressure in three-phase flow in porous media are
applied. Here, the unknown primary variables are phase saturations sα (or
component accumulations) and pressures pα, and thus, appropriate initial and
boundary conditions are defined.

Based on the type of injection and/or production well (e.g., vertical, hori-
zontal, or multi-segment), a suitable well model [26, 27] is coupled with (1) to
measure the volumetric flow rates, which depend on the state of the reservoir.
A standard well model for vertical wells is given as follows.

The volumetric flow rates qα for α ∈ {W,O,G} in a multi-phase polymer
model are computed using a semi-analytical model according to [26, 28] and
are given by

qW =
kRW(sW)

µW,effRk(c)
WI(pbh − pW − ρWg(zbh − z)), (2a)
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qO =
kRO(sO)

µO,eff
WI(pbh − pO − ρOg(zbh − z)), (2b)

qG =
kRG(sG)

µG,eff
WI(pbh − pG − ρGg(zbh − z)). (2c)

Here, kRα(sα), ρα, pα, and µα,eff are the saturation-dependent relative perme-
ability, density, pressure, and effective viscosity of phase α ∈ {W,O,G}, WI
is the well index, zbh is the well datum level depth, pbh is the bottom hole
pressure at the well datum level, z is the depth, Rk(c) models the reduced per-
meability experienced by the water-polymer mixture, and g is the magnitude
of the gravitational acceleration.

Individual wells are usually controlled by surface flow rates or bottom hole
pressures. Additional equations which enforce limit values for the component
rates and bottom-hole pressures are

pbh − plimit
bh ≤ 0,

qα − qlimit
α ≤ 0,

where qlimit
α is the desired surface-volume rate limit for component α, e.g., field

oil rate at the production well, and plimit
bh is the desired bottom-hole pressure

limit. Also, logic constraints to determine what happens if the computed rates
or pressures violate the operational constraints, in which case a well may switch
from rate control to pressure control, etc., are imposed.

If qα,i is the field volumetric flow rate (in sm3/day) of component α ∈
{W,O,G} in the production wells over the time interval ∆ti, the field pro-
duction total (in sm3) of the component α is given as QαP,i = qα,i∆ti. For
polymer production total (in kg), QPP,i = cLqW,i∆ti, where cL is the leftover
field polymer concentration (in kg/sm3) after adsorption. Injection quantities
QPI,i and QWI,i are computed similarly, however with volumetric flow rates in
the injection wells.

As already mentioned above, the solution of the polymer flooding model
stated in (1) depends on a given control vector u, see Section 2.2 for a detailed
description of the components of the control vector, and a set of geological
properties θθθ. Consequently, all involved unknowns depend on u and θθθ and the
same holds for qW, qO, and qG. From now on, we thus write QαP,i(u, θθθ) for the
field production total of component α ∈ {W,O,G}, depending on the controls
u and the parameters θθθ, within the time interval ∆ti, similar as above. We
further write QPP(u, θθθ) for the polymer production total, and QPI,i(u, θθθ) and
QWI,i(u, θθθ) for the polymer and water injection.

2.2 Optimization of the economic value of the reservoir
response

This study considers the annually discounted net present value (NPV) function
as the RPM, similar to the one in [7, 29]. The NPV function is related to
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the control variables through the polymer simulation model (1). For every
polymer control strategy, the NPV function evaluates the economic value of
the reservoir response. Also, because the injection and production facilities
have limited capacity, the control variables are subject to bound constraints.

Suppose that the geological properties of the oil reservoir of interest, such
as porosity, permeability, etc., are known and denoted by θθθ. Let D = RNu be
the domain of control vectors of polymer flooding for the given reservoir, such
that

u =
[
u1

1, u
1
2, . . . , u

1
Nw , . . . , u

Nt
1 , uNt2 , . . . , uNtNw

]T
,

where T means transpose. The subscript of each component of u denotes the
well index, the superscript is the control time step, Nw and Nt denote the
number of wells and time steps for each well, respectively, and Nu = Nw ·Nt
is the total number of control variables. Each component uij in u represents a
control type (e.g., polymer concentration or injection rate, oil or water rate,
bottom hole pressure) of well j at the time step i.

The Nu-dimensional optimization problem for polymer flooding is to find
the optimal u ∈ D that maximizes the NPV function subject to bound
constraints. That is

maximize
u∈D

J(u, θθθ) :=

Nt∑

i=1

Ji(u, θθθ)

(1 + dτ )
ti
τ

(3a)

with

Ji(u, θθθ) := rOPQOP,i(u, θθθ) + rGPQGP,i(u, θθθ)−Ri(u, θθθ),
Ri(u, θθθ) := rWIQWI,i(u, θθθ) + rWPQWP,i(u, θθθ) (3b)

+ rPIQPI,i(u, θθθ) + rPPQPP,i(u, θθθ),

subject to

ulow
j ≤ uij ≤ uupp

j for all j = 1, . . . , Nw, i = 1, . . . , Nt, (3c)

where Ji denotes the cumulative NPV value in the i-th simulation time step.
Further, dτ is the discount rate for a period of τ days, ti is the cumulative
time (in days) starting from the beginning of production up to the i-th time
step, and ∆ti := ti − ti−1 is the time difference (in days) between the time
steps ti and ti−1. The scalars rOP, rGP, rWI and rWP denote the prices of oil
and gas production and the cost of handling water injection and production
(in USD/sm3) respectively, and rPI and rPP are the costs of polymer injection
and production (in USD/kg). In addition, QWI,i and QPI,i are the total water
injection (in sm3) and total polymer injection or slug size (in kg) over the
time interval ∆ti. The quantities QOP,i, QWP,i and QGP,i denote the total oil,
water and gas productions (in sm3) over the time interval ∆ti, while QPP,i

represents the total polymer production (in kg) over the time interval ∆ti. The
quantities QOP,i, QWI,i, QWP,i, QGP,i, QPI,i, and QPP,i are computed at each
control time step i for given u and fixed θθθ from the polymer flooding model (1)
and the well equations (2).
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The evaluation of the objective function J in (3a) shall be referred to
as the full order model (FOM) function evaluation in the remainder of this
study. Therefore, the constrained optimization problem presented in (3) can
be interpreted as the FOM optimization problem for polymer flooding, given
a suitable discretization of the system (1) (see Section 6.1 for details on the
discretization). Also, because θθθ is fixed during the optimization process, J is
considered a function of u only, and hence we often write J(u) and Ji(u). The
solution method utilized for this optimization problem is presented in the next
section.

3 Ensemble based optimization algorithm

In this work, the FOM solution to problem (3) follows from the application
of the adaptive ensemble-based optimization (EnOpt) method analogous to
the one presented in [7, 30, 31]. We again emphasize that we restrict our
attention to a fixed choice of geological parameters θθθ. Since we apply the EnOpt
algorithm later on in our surrogate-based algorithm to a function different
from J , we subsequently begin by describing the algorithm in its general form.
Afterwards, we discuss the application of the EnOpt algorithm to the objective
function J and the resulting computational costs.

3.1 Optimization algorithm for a general objective
function

In what follows, we describe the EnOpt algorithm for a general objective
function F : RNu → R to iteratively solve the optimization problem

maximize
u∈D

F (u) (4a)

subject to ulow
j ≤ uij ≤ uupp

j for all j = 1, . . . , Nw, i = 1, . . . , Nt. (4b)

The EnOpt method is an iterative method in which one starts with an ini-
tial guess u0 that is usually based on experimental facts in such a way that
the underlying constraints in (4b) are satisfied. We sequentially seek for an
improved approximate solution u that maximizes F (u) using a preconditioned
(with covariance matrix adaptation) gradient ascent method given by

ûk+1 = uk + βk dk, (5)

dk ≈
Ck

uk
Gk

‖Ck
uk

Gk‖∞
, (6)

where k = 0, 1, 2, . . . is the index of the optimization iteration. The tuning
parameter βk for the step size is computed using an auxiliary line search [32]
and is selected such that 0 < βk ≤ 1. Furthermore, Ck

uk
∈ RNu×Nu denotes

the user-defined covariance matrix of the control variables at the k-th iteration
and Gk ∈ RNu is the approximate gradient of F with respect to the control
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variables, preconditioned with Ck
uk

to obtain the search direction at the k-th
iteration.

To ensure that the constraints in (5) are satisfied, the original solution
domain of the control variables is projected to the set of admissible controls
Dad, defined as

Dad := {u ∈ D : ulow
j ≤ uij ≤ uupp

j for all j = 1, . . . , Nw, i = 1, . . . , Nt}, (7)

which corresponds to the constraints in (4b). The updating scheme in (5) is
performed in Dad. We utilize a component-wise projection PDad

: D → Dad on
the update ûk+1 ∈ D, such that

uk+1 = PDad
(ûk+1) ∈ Dad. (8)

In practical applications, it is not common to have controls at different wells
to correlate, but the controls may vary smoothly with time at individual wells.
Hence, the use of Ck

uk
in Equation (5) enforces this regularization on the

control updates. At k = 0, we utilize a temporal covariance function given by

Cov
(
uij , u

i+h
j

)
= σ2

jρ
h

(
1

1− ρ2

)
, for all h ∈ {0, . . . , Nt − i}, (9)

from a stationary auto regression of order 1 (i.e., AR(1)) model [33] to com-
pute C0

u0
with an assumption that controls of different wells are uncorrelated.

The variance for the well j is given by σ2
j > 0, and ρ ∈ (−1, 1) is the cor-

relation coefficient used to introduce a level of dependence between controls
of individual wells at different control time steps (since the AR(1) model is
stationary).

The formulation above gives rise to a block diagonal matrix C0
u0

, which
is updated by matrices with rank one at subsequent iterations, using the sta-
tistical method presented in [31], to obtain an improved covariance matrix
Ck

uk
. For this reason, the solution method in Equation (5) is referred to as the

adaptive EnOpt algorithm.
We compute the preconditioned approximate gradient Ck

uk
Gk following the

approach of the standard EnOpt algorithm. At the k-th iteration, we sample
N ∈ N control vectors uk,m ∈ Dad, form = 1, . . . , N, from a multivariate Gaus-
sian distribution with mean equal to the k-th control vector uk and covariance
matrix given by Ck

uk
. Here, the additional subscript m is used to differenti-

ate the perturbed control vectors from the one obtained by Equation (5). The
cross-covariance of the control vector uk and the objective function F (uk) at
the k-th iteration is approximated according to [34] as

Ck
uk,F

:=
1

N − 1

N∑

m=1

(uk,m − uk)
(
F (uk,m)− F (uk)

)
. (10)
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Since uk,m ∼ N (uk,C
k
uk

) for m = 1, . . . , N , we assume in Equation (10) that
the mean of {uk,m}Nm=1 is approximated by uk. By first-order Taylor series
expansion of F about uk, it can easily be deduced that Equation (10) is an
approximation of Ck

uGk at the k-th iteration, that is

Ck
uk

Gk ≈ Ck
uk,F

, (11)

see [30, 35] for a detailed proof. Therefore, we choose the search direction as
dk = Ck

uk,F
/‖Ck

uk,F
‖∞ in Equation (5). The updating scheme in Equation (5)

is performed until the convergence criterion

F (uk) ≤ F (uk−1) + ε (12)

is satisfied, where ε > 0 is a specified tolerance.
To conclude, for an arbitrary objective function F , the EnOpt procedure

described in this section is summarized in Algorithm 1. In this algorithm, the
OptStep function replicates a single optimization step in the EnOpt proce-
dure and is detailed in Algorithm 2. We note that returning the set of function
values Tk+1 does not play a role in Algorithm 1 but is crucial for training the
surrogate model in Section 5. The line search procedure LineSearch can be
found in Algorithm 3.

Algorithm 1 EnOpt algorithm

Input: function F : RNu → R for which to solve (4); initial guess u0 ∈ RNu ,
sample size N ∈ N, tolerance ε > 0, maximum number of iterations k∗,
initial step size β > 0, step size contraction r ∈ (0, 1), maximum number
of step size trials ν∗ ∈ N

Output: approximate solution u∗ ∈ RNu of (4)
1: function EnOpt[F ](u0, N , ε, k∗, β, r, ν∗)
2: u1, T1 ← OptStep[F ](u0, N , 0, β, r, ν∗)
3: k ← 1
4: while F (uk) > F (uk−1) + ε and k < k∗ do
5: uk+1, Tk+1 ← OptStep[F ](uk, N , k, β, r, ν∗)
6: k ← k + 1
7: end while
8: return u∗ ← uk
9: end function
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Algorithm 2 OptStep algorithm

Input: function F : RNu → R; current control vector uk ∈ RNu , sample size
N ∈ N, number of iteration k, initial step size β > 0, step size contraction
r ∈ (0, 1), maximum number of step size trials ν∗ ∈ N

Output: update uk+1 ∈ RNu of the controls, set Tk+1 of N pairs of the form
(u, F (u))

1: function OptStep[F ](uk, N , k, β, r, ν∗)
2: if k = 0 then
3: Compute the initial covariance matrix C0

u0
using (9)

4: else
5: Compute the covariance matrix Ck

uk
using the formulation in [31]

6: end if
7: Sample N control vectors {uk,j}Nj=1 from a distribution N (uk,C

k
uk

)

8: Compute vector Ck
uk,F

according to (10) and store values {F (uk,j)}Nj=1

9: Compute the search direction dk = Ck
uk,F

/‖Ck
uk,F
‖∞

10: uk+1 ← LineSearch[F ](uk, dk, β, r, ν∗)
11: Tk+1 ← {(uk,j , F (uk,j))}Nj=1

12: return uk+1, Tk+1

13: end function

Algorithm 3 Line search

Input: function F : RNu → R; current controls uk ∈ RNu , search direction
dk ∈ RNu , initial step size β > 0, step size contraction r ∈ (0, 1), maximum
number of step size trials ν∗ ∈ N, tolerance ε > 0

Output: update uk+1 ∈ RNu of the controls
1: function LineSearch[F ](uk, dk, β, r, ν∗)
2: βk ← β
3: Compute uk+1 according to (8)
4: ν ← 0
5: while F (uk+1)− F (uk) ≤ ε and ν < ν∗ do
6: βk ← r βk
7: Compute uk+1 according to (8)
8: ν ← ν + 1
9: end while

10: return uk+1

11: end function

3.2 FOM-EnOpt algorithm for enhanced oil recovery

Eventually, we are interested in solving the optimization problem (3) for
polymer flooding in enhanced oil recovery. As already discussed in the introduc-
tion, our contribution is concerned with the development of a surrogate-based
algorithm to reduce the computational costs for solving (3). To this end,
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if the EnOpt algorithm is used to maximize the function J , defined in
Equation (3a), we refer to Algorithm 1 as the FOM-EnOpt algorithm. That is,
the FOM-EnOpt algorithm is given as EnOpt[J ], see Algorithm 4.

Algorithm 4 FOM-EnOpt algorithm

Input: initial guess u0 ∈ RNu , sample size N ∈ N, tolerance ε > 0, maximum
number of iterations k∗, initial step size β > 0, step size contraction r ∈
(0, 1), maximum number of step size trials ν∗ ∈ N

Output: approximate solution u∗ ∈ RNu of (3)
1: function FOM-EnOpt(u0, N , ε, k∗, β, r, ν∗)
2: return EnOpt[J ](u0, N , ε, k∗ β, r, ν∗)
3: end function

As already indicated, we are concerned with the computational effort of
the FOM-EnOpt algorithm. Let us recall that evaluating J as in (3a) has the
complexity of the high-fidelity reservoir simulator, which, in itself, requires
the solution of the discretized polymer flooding model equations (1). In Algo-
rithm 1, the most expensive part is to call OptStep[J ], which requires N
evaluations of J in Line 8 of Algorithm 2 such that the direction dk can be
computed in Line 9. Furthermore, the line search in Line 10 evaluates J for
every search step. Suppose the simulation time for computing J is particu-
larly large. In that case, the FOM-EnOpt algorithm can be extremely costly,
especially if many optimization steps are required since OptStep[J ] is called
at every iteration step. In this case, all steps in Algorithm 1 and Algorithm 2
that do not require evaluating J are computationally negligible.

Since expensive FOM evaluations are very likely to happen for the pre-
sented application, we aim to derive a surrogate-based algorithm that uses
an approximation of J whenever possible and thus tries to reduce the num-
ber of calls of OptStep[J ]. Instead, FOM information is reused whenever
possible and only computed when necessary. The following section introduces
a machine-learning-based way for deriving suitable non-intrusive surrogate
models.

4 Neural networks as surrogate model for the
input-output map

Deep neural networks (DNNs) are machine learning algorithms suitable for
approximating functions without knowing their exact structure. Instead, DNNs
can be fitted to approximately reproduce known target values for a set of given
inputs. Since DNNs learn from examples of labeled data, they can be seen
as supervised learning algorithms. In contrast, unsupervised machine-learning
algorithms try to detect hidden structures within unlabeled data. See [36] for
an exhaustive overview of supervised and unsupervised learning algorithms.
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A particular class of DNNs are feedforward neural networks, in which no
cyclic flow of information is allowed. This study considers feedforward neural
networks consisting of (fully-connected) linear layers combined with a nonlin-
ear activation function. Our description of these types of DNNs is based on
formal definitions that can be found in [37] and [38], for instance.

Feedforward neural networks are used to approximate a given function
f : RNin → RNout for a certain input dimension Nin ∈ N and an output
dimension Nout ∈ N. To this end, let L ∈ N denote the number of layers in
the neural network, and Nin = N0, N1, . . . , NL−1, NL = Nout ∈ N the num-
bers of neurons in each layer. Furthermore, the weights and biases in layer
i ∈ {1, . . . , L} are denoted by Wi ∈ RNi×Ni−1 and bi ∈ RNi . We assemble
the weights and biases in an L-tuple W =

(
(W1, b1), . . . , (WL, bL)

)
. More-

over, let ρ : R→ R be the so-called activation function and ρ∗n : Rn → Rn the
component-wise application of the activation function ρ for dimension n ∈ N,
that is ρ∗n(y) := [ρ(y1), . . . , ρ(yn)]

T ∈ Rn for y ∈ Rn. Then we can define the
corresponding feedforward neural network in the following way:

Definition 1 (Feedforward neural network) The feedforward neural network with
weights and biases W and activation function ρ for approximating f : RNin → RNout ,
is defined as the function ΦW : RNin → RNout . For a given input x ∈ RNin , the result
ΦW(x) ∈ RNout is computed as

ΦW(x) := rL(x),

where rL : RNin → RNout is defined in a recursive manner using the functions
ri : RNin → RNi for i = 0, . . . , L− 1, which are given by

rL(x) := WL rL−1(x) + bL,

ri(x) := ρ∗Ni (Wi ri−1(x) + bi) for i = 1, . . . , L− 1,

r0(x) := x.

Fitting neural network weights and biases to a given function f is accom-
plished by creating a sample set Ttrain = {(x1, f(x1)), . . . , (xn, f(xn))} ⊂
X × RNout (the so-called training set), consisting of inputs xi ∈ X from an
input set X ⊂ RNin and corresponding outputs f(xi) ∈ RNout . The process
of finding the weights W such that ΦW(xi) ≈ f(xi) for i = 1, . . . , n is called
training of the neural network. During the training, the weights and biases
of the neural network ΦW are iteratively adjusted such that a loss function,
which measures the deviation of the output ΦW(xi) for a given input xi from
the desired result f(xi), is minimized. A common choice for the loss function
is the mean squared error loss L (ΦW, Ttrain) given as

L (ΦW, Ttrain) :=
∑

(x,y)∈Ttrain

‖ΦW(x)− y‖22. (13)
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For a fixed architecture, i.e. fixed number of layers L and numbers of neurons
N0, . . . , NL in each layer, we define the set of possible weights and biases Ψ as

Ψ :=
L×
i=1

(
RNi×Ni−1 × RNi

)
.

The set Ψ contains L-tuples such that the matrices and vectors in each tuple
have suitable dimensions. The aim of neural network training is to find weights
and biases W∗ ∈ Ψ such that the corresponding function ΦW∗ minimizes the
loss function L, i.e.

W∗ = arg min
W∈Ψ

L (ΦW, Ttrain) . (14)

There are several suitable optimization algorithms to approximate the solution
of (14) numerically. All of these methods require access to the gradient of the
loss function L with respect to the weights W of the DNN, which can be com-
puted efficiently using an algorithm called backpropagation, see [39]. Popular
examples of optimization algorithms used in neural network training are vari-
ants of (stochastic) gradient descent methods, see [40] for an overview. For small
neural networks with only a few layers and neurons, it is also possible to apply
methods that use or approximate higher-order derivatives of the loss function,
for instance, the L-BFGS optimizer [41], which is a limited-memory variant of
the BFGS method, see for instance Section 6.1 in [32]. In the context of neu-
ral network training, each iteration of the optimizer is called epoch. Typically,
a maximal number of epochs is prescribed for the optimizer to perform.

To prevent a neural network from overfitting the training data, we employ
early stopping [42]. In this method, the loss function is evaluated on a validation
set Tval ⊂ X ×RNout after each epoch. The validation set is usually chosen to
be disjoint from the training set, i.e. Tval ∩ Ttrain = ∅. Let Wk ∈ Ψ denote the
weights in epoch k ∈ N. In each epoch, the value L(ΦWk

, Tval) is computed, and
if this value does not decrease anymore over a prescribed number of consecutive
epochs, the training is aborted. This method ensures that the resulting neural
network can perform well on unseen data (that is assumed to have the same
structure as the training data).

The result of the optimization routine typically depends strongly on the ini-
tial values W0 ∈ Ψ of the weights. There are several methods for initializing the
weights of neural networks, for instance, the so-called Kaiming initialization,
see [43] for more details. We perform multiple restarts of the training algorithm
using different initial values for the weights to minimize the dependence of the
resulting neural network on the weight initialization. Finally, we select the neu-
ral network ΦW∗ that produced the smallest loss L(ΦW∗ , Ttrain)+L(ΦW∗ , Tval)
over all training restarts, i.e. the smallest combined loss on the training and
the validation set.

Finding an appropriate neural network architecture can be difficult in
practical applications. Especially the number of layers and the number of
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neurons significantly influence the approximation capabilities of the result-
ing neural network. We call a layer hidden if it is not an input or an output
layer. Neural networks with more than one hidden layer are called deep neu-
ral networks. See [44] for proofs that DNNs have an increased expressiveness.
In addition, there are lots of different activation functions available. Typical
examples include the rectified linear unit (ReLU) ρ(x) = max(x, 0), which is
nowadays the most popular activation function [45], or the hyperbolic tangent

ρ(x) = tanh(x) = e2x−1
e2x+1 .

5 Adaptive-ML-EnOpt algorithm using deep
neural networks

The primary purpose of this work is to propose an adaptive machine-learning-
based algorithm for avoiding expensive FOM evaluations as often as possible.
To this end, we first discuss the usage of DNNs for the NPV value and
subsequently introduce the Adaptive-ML-EnOpt algorithm.

5.1 Surrogate models for the net present value

As discussed in Section 3, we use DNNs to construct a surrogate model for
the FOM objective functional J . DNNs are particularly well suited for non-
intrusive model reduction if the simulator is considered a black box with no
direct access to solutions of the underlying PDEs. In fact, given the formulation
of the objective functional (3a), we assume to only have access to the respective
components Ji(u).

Following the definition of a DNN in Section 4, two input-output maps can
be used to approximate J . We refer to the scalar-valued output by considering
J : RNu → R as the input-output map. Furthermore, we refer to the vector-
valued output if we make different use of the structure of J by writing J(u) =
δTj(u) with

j : RNu → RNt ,

j(u) := [Ji(u)]
Nt
i=1 ,

and the vector δ ∈ RNt , which includes the discount factors, is defined as

δ :=

[
1

(1 + dτ )
ti
τ

]Nt

i=1

.

In the scalar-valued case (DNNs-approach), we directly construct a DNN
for J with a corresponding function ΦWs : RNu → R, i.e. we use a DNN
with Nin = Nu and Nout = 1. Instead, in the vector-valued case (DNNv-
approach), we construct a DNN for approximating j with a corresponding
function ΦWv : RNu → RNt and, by using δ, we indirectly approximate J .
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This means that we apply a DNN with input- and output-dimensions given by
Nin = Nu and Nout = Nt, and multiply the result by δ whenever the respective
DNN is used for approximating J . The algorithm described below works for
both cases, the scalar-valued and the vector-valued output. Therefore, if access
to the individual components of the vector-valued function j is available, it is
possible to run the algorithm with both versions. The different neural network
output sizes, and therefore, the various structures of the training data, might
improve the DNN training results. In our numerical experiment, we observe
that the vector-valued DNN yields slightly better results than the scalar-valued
DNN (see Section 6). Nevertheless, we consider both the scalar- and vector-
valued approaches to discuss the case where the black box reservoir simulator
produces only scalar-valued outputs.

By the DNNs- and DNNv-approach, we thus construct a surrogate for the
objective function for the optimization problem (3). It remains to explain a
suitable and robust EnOpt algorithm that takes advantage of a DNN but shows
a similar convergence behavior as the FOM algorithm. A common strategy is
to construct a sufficiently accurate surrogate JML ∈ {ΦWs

, δTΦWv
} for the

entire input space in a large offline time. Following the FOM-EnOpt procedure
from Section 3, given JML, a surrogate-based procedure would then mean to set
F := JML in Algorithm 1. However, no FOM stopping criterion would be used,
and since no error control for the surrogate model is given, no certification
of the surrogate-based procedure would be available. Importantly, we remark
that the input dimension Nu of both DNN approaches is proportional to the
number of time steps Nt and the number of physical variables in the model Nw.
Thus, dependent on the complexity of the reservoir simulation, Nu may be
large. Consequently, it may not be possible to construct a surrogate model
with a DNN that is accurate for the entire input space. Even if it were possible
to construct such a DNN, we would require prohibitively costly training for
computing the training set, validation set, and weights.

5.2 Adaptive algorithm

To circumvent the issue of constructing a globally accurate surrogate, in
what follows, we describe the adaptive machine learning EnOpt algorithm
(Adaptive-ML-EnOpt). In this algorithm, we incorporate the construction of
the DNN into an outer optimization loop trained and certified by FOM quan-
tities. With respect to the FOM-EnOpt procedure, we remark that each FOM
optimization step requires N evaluations of J for computing dk. To obtain
an appropriately accurate direction, it is required that N is chosen suffi-
ciently large [46]. For the Adaptive-ML-EnOpt procedure, we only use a single
FOM-based optimization step at each outer iteration k. Then, we use the N
evaluations of the FOM as data points for training a locally accurate surro-
gate JkML. Instead of proceeding with the FOM functional J , we utilize the
DNN to start an inner EnOpt algorithm with F = JkML as objective function in
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Section 3.1 and uk as initial guess. Denote by u
(l)
k the iterates of the inner opti-

mization loop in the k-th outer iteration, i.e., in particular, we have u
(0)
k = uk.

According to (12), the inner EnOpt iteration terminates if the surrogate-based
criterion

JkML(u
(l)
k ) ≤ JkML(u

(l−1)
k ) + εi (15)

is met for a suitable tolerance εi > 0. If the inner iteration terminates after L
iterations with a control u

(L)
k , the next outer iterate uk+1 is defined as uk+1 :=

u
(L)
k . For a certified FOM-based stopping criterion of the outer optimization

loop, given the iterate uk, we check whether the FOM-EnOpt procedure would,
indeed, also stop at the same control point. Thus, we perform a single FOM-
based optimization step, which includes the computation of dk and the line
search, and results in a control ũk. For verifying whether the FOM optimization
step successfully finds a sufficiently increasing point at outer iteration k, we
consider the FOM termination criterion

J(ũk) ≤ J(uk) + εo, (16)

where εo > 0 is a suitable tolerance. If (16) is fulfilled, no improvement of the
objective function value using FOM optimization steps can be expected, and
therefore we also terminate the Adaptive-ML-EnOpt algorithm. If instead, (16)
is not met, we use the computed training data (collected while computing dk)
to retrain the DNN and restart an inner DNN-based EnOpt algorithm. We
emphasize that the fully FOM-based stopping criterion constitutes a signifi-
cant difference to what is proposed in [21], where the termination criterion is
based on the approximation quality of the surrogate model at the current iter-
ate. However, we saw in our experiments that such an approximation-based
criterion might lead to an undesired early stopping of the algorithm.

One may be concerned about the fact that the surrogate-based inner opti-
mization routine produces a decreasing or stationary point. For this reason,
after every outer iteration k of the Adaptive-ML-EnOpt procedure, the inner
DNN-optimization is only accepted after a sufficient increase, i.e.

J(uk+1) > J(uk) + εo. (17)

If an iterate is not accepted, we abort the algorithm. Instead of aborting, one
may proceed with an intermediate FOM optimization step. We would further
like to emphasize that the fulfillment of (17) also depends on the successful
construction of the neural network, meaning that the parameters for the neural
network are chosen appropriately. If, instead, (17) fails due to an inaccurate
neural network, an automatic variation of the parameters could be enforced to
the neural network training, and the corresponding outer iteration should be
repeated. However, for the sake of simplicity and because it did not show any

Paper IV

162



Springer Nature 2021 LATEX template

18 Adaptive ML based surrogate modeling for PDE-constrained optimization

relevance in our numerical experiments, we do not specify approaches for the
case that uk+1 is not accepted due to (17).

Regarding the choice of the different tolerances εi and εo for the inner and
outer stopping criteria in the Adaptive-ML-EnOpt algorithm, we propose to
choose a small value for εi similar to the tolerance ε in the FOM-EnOpt pro-
cedure. The inner iterations are much cheaper due to the application of a fast
surrogate, such that a more significant amount of inner iterations is accept-
able. In contrast, we recommend selecting a larger tolerance εo to perform
fewer outer iterations for obtaining a considerable speed-up. However, if max-
imum convergence w.r.t. the FOM-EnOpt algorithm is desired, εo is to be set
equal to ε.

The above-explained Adaptive-ML-EnOpt procedure is summarized in
Algorithm 5.

Algorithm 5 Adaptive-ML-EnOpt algorithm

Input: initial guess u0 ∈ RNu , sample size N ∈ N, tolerance εo > 0 for outer
iterations, tolerance εi > 0 for inner iterations, maximum number of outer
iterations k∗o , maximum number of inner iterations k∗i , DNN construc-
tion strategy CS ∈ {DNNs,DNNv}, set of DNN-specific variables VDNN

as discussed in Section 4 (e.g. network architecture, loss function, train-
ing parameters), initial step size β > 0, step size contraction r ∈ (0, 1),
maximum number of step size trials ν∗ ∈ N

Output: approximate solution u∗ ∈ RNu of (3)
1: function RomEnOpt(u0, N , εo, εi, k

∗
o , k∗i , CS, VDNN, β, r, ν∗)

2: ũ0, T0 ← OptStep[J ](u0, N , 0, β, r, ν∗)
3: k ← 0
4: while J(ũk) > J(uk) + εo and k < k∗o do
5: JkML ← Train(Tk, CS, VDNN)
6: uk+1 ← EnOpt[JkML](uk, N , εi, k

∗
i β, r, ν∗)

7: if J(uk+1) ≤ J(uk) + εo then
8: return u∗ ← uk
9: end if

10: ũk+1, Tk+1 ← OptStep[J ](uk+1, N , k, β, r, ν∗)
11: k ← k + 1
12: end while
13: return u∗ ← uk
14: end function

The Train function performs the neural network training procedure as
described in Section 4 and returns, depending on the chosen DNN construc-
tion strategy, a function ΦWs

or ΦWv
that approximates the FOM objective

function J . Particularly, the result of Train can be used as the function F in
the EnOpt procedure.
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The outer acceptance criterion (17) is checked in Line 7. Using the FOM-
based stopping criterion in Line 4, we ensure that the Adaptive-ML-EnOpt
algorithm has an equivalent stopping procedure as the FOM-EnOpt algo-
rithm, see Line 4 in Algorithm 1. However, the algorithm might terminate
at a different (local) optimal point, which we also observe in the numerical
experiments.

Compared to the FOM-EnOpt procedure, we emphasize that, in the
Adaptive-ML-EnOpt algorithm, mainly the single calls of OptStep[J ] in
Lines 2 and 10 have FOM complexity, scaling with the number of samples N .
Furthermore, the outer stopping criterion in Line 4 and the conditions for
acceptance in Line 7 require a single FOM evaluation. The construction of
the surrogate makes use of FOM data that is already available from the FOM
optimization steps in Lines 2 and 10. In addition, while the training data for
Line 5 is available from calling OptStep[J ], the training function Train itself
is relatively cheap. Furthermore, calling EnOpt[JkML] has low computational
effort since evaluating the surrogate JkML for a given control (i.e., performing
a single forward pass through the neural network) is much faster than eval-
uating J . The primary motivation for the Adaptive-ML-EnOpt algorithm is
the idea that many of the costly FOM optimization steps in the FOM-EnOpt
algorithm can be replaced by sequences of cheap calls of EnOpt[JkML] with
the surrogate JkML. However, since the surrogate might only be reliable in a
specific part of the set of feasible control vectors around the current iterate uk,
we retrain the surrogate if the FOM optimization step suggests that a further
improvement of the objective function value is possible. Therefore, the overall
goal of the Adaptive-ML-EnOpt algorithm is to terminate with a considerably
smaller number of (outer) iterations k than the FOM-EnOpt algorithm, and
thus, to reduce the computational costs for solving the polymer EOR opti-
mization problem in (3). We refer to the subsequent section for an extensive
complexity and run time comparison for a practical example.

The main motivation for the Adaptive-ML-EnOpt algorithm is illustrated
in Figure 1. Computing the gradient information using evaluations of the func-
tion J is costly, whereas gradient computations using the approximation JkML,
obtained, for instance, via training a neural network, is cheap. In the example,
the Adaptive-ML-EnOpt algorithm performs more optimization steps in total.
However, most of these optimization steps are cheap since they only require
evaluations of JkML. For the Adaptive-ML-EnOpt algorithm, only those steps
involving evaluations of J (i.e., outer iterations) require a large computational
effort. Each optimization step is costly in the FOM-EnOpt algorithm since
the exact objective function J is evaluated multiple times. Altogether, in the
example shown in Figure 1, the Adaptive-ML-EnOpt algorithm performs less
costly gradient computations than the FOM-EnOpt procedure while arriving
approximately at the same optimum. This motivates why the Adaptive-ML-
EnOpt algorithm can be preferable with respect to the required computation
time.
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Gradient computation using FOM

Gradient computation using FOM
and neural network training

Gradient computation using surrogate

FOM optimization step

Surrogate-based optimization step
similar to FOM optimization step

Surrogate-based optimization step

Fig. 1: Example of optimization paths taken by the FOM-EnOpt algorithm
(left part of the figure) and the Adaptive-ML-EnOpt algorithm (right part of
the figure).

6 Numerical validation for a five-spot
benchmark problem

In this section, we present an example with a synthetic oil reservoir in which
the polymer flooding optimization problem (3) is solved using the traditional
solution method, the FOM-EnOpt algorithm, and our proposed Adaptive-ML-
EnOpt method presented in Algorithm 5. The focus is to demonstrate a more
efficient and improved method of dealing with the optimization part of a closed-
loop reservoir workflow [30] for polymer flooding with the assumption that
the geological properties of the reservoir are known. We start by providing
information on the algorithm implementation.

6.1 Implementational details

For a numerical approximation of the system (1) of non-linear partial dif-
ferential equations and the corresponding well equations (2), we make use
of the open porous media flow reservoir simulator (OPM) [24, 47]. The sys-
tem is discretized spatially using a two-point flux approximation (TPFA) with
upstream-mobility weighting (UMW) and temporally using a fully-implicit
Runge-Kutta method. The resulting discrete-in-time equations are solved using
a Newton-Raphson scheme to obtain time-dependent states and the output
quantities from the well’s equation in terms of fluid production of the reservoir
per time step. In this numerical experiment, we perform all polymer flooding
simulations in parallel on a 50 core CPU.

For the implementation of the DNN-based surrogates, the Python package
pyMOR [48] is used. The implementation of the neural networks and cor-
responding training algorithms in pyMOR is based on the machine learning
library PyTorch [49].
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Throughout our numerical experiments described in the subsequent section,
we apply the L-BFGS optimizer with strong Wolfe line-search [50, 51] for train-
ing the neural networks, i.e., to solve (14). Further, we perform a maximum
of 1000 training epochs in each restart.

The number of training restarts influences the accuracy of the trained neu-
ral networks and the computation time required for the training. A larger
number of restarts typically leads to smaller losses and more training time. To
take these two factors into account, we consider different numbers of restarts
in our numerical study presented below. The respective results can be found in
the subsequent section. In general, we use relatively small numbers of restarts.
First of all, we are not interested in obtaining a neural network with very high
accuracy. Due to the adaptive retraining of the networks, the surrogates are
replaced in each outer iteration anyway. They are only supposed to lead the
optimizer to a point with a larger objective function value. On the other hand,
as indicated before, a larger number of restarts might result in an unnecessar-
ily long training phase, which must be performed in each outer iteration. The
small numbers of 15 and 35 restarts we tried in our studies can thus be seen as a
compromise between the accuracy of the surrogate models and computational
effort for the training algorithm.

We use 10% of the sample set for validation during the neural network
training, and the training routine is stopped early if the loss does not decrease
for 10 consecutive epochs. Moreover, the mean squared error loss (MSE loss) is
used as the loss function. The neural network training is performed on scaled
data. The input values are scaled to [0, 1]Nu , and the output values are scaled
to [0, 1] in the DNNs-case and [0, 1]Nt in the DNNv-case, respectively. The
scaling of the input values can be computed exactly using the lower and upper
bounds ulow

j and uupp
j for the control variables by

uij 7→
uij − ulow

j

uupp
j − ulow

j

(18)

for j = 1, . . . , Nw and i = 1, . . . , Nt. For the output values, we take the min-
imum and maximum value over the training set as lower and upper bound
and perform the same scaling as in Equation (18). The tanh function serves
as the activation function for each layer. Kaiming initialization is applied for
initializing the neural network weights.

The input and output dimensions of the neural networks were already
described in Section 5 and are different for the DNNs- and DNNv-case. Regard-
ing the training data for the vector valued case DNNv, we note that we require
Tk to store {(uk,j , j(uk,j))}Nj=1 instead of {(uk,j , J(uk,j))}Nj=1, which we did
not include in Algorithm 2 for brevity.
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6.2 Case study: five-spot field

The numerical experiment considers a two-dimensional reservoir model with
a three-phase flow, including oil, water, and gas (cf. Section 2). The compu-
tations are performed on a uniform grid that consists of 50 × 50 grid cells.
The model has one injection and four production wells spatially arranged in a
five-spot pattern as shown in Figure 2.

Fig. 2: Porosity distribution of the five-spot field and placement of the injec-
tion and production wells.

On average, the reservoir has approximately 30% porosity with a heteroge-
neous permeability distribution. The initial reservoir pressure is 200 bar. The
initial average oil and water saturations are 0.6546 and 0.3454, respectively.
The original oil in place is 4.983 ·106 sm3. Fluid properties are similar to those
of a light oil reservoir. The viscosity for saturated oil at varying bubble point
pressure lies between 0.1 cP and 0.56 cP, and the viscosity of water is 0.01 cP.
The densities of oil and water are taken as 732 kg/m3 and 1000 kg/m3, respec-
tively. In this setting, it is easy to see that the displacement is unfavorable
since the oil-water mobility ratio λ is such that 10 ≤ λ ≤ 56. The reservoir
rock parameters utilized for the polymer flooding simulation in this problem
are given by Table 1.

In this example, the injection well is controlled by two independent control
variables, namely the water injection rate and the polymer concentration at
each control time step. The lower and upper bounds for the water injection
rate are set to 0 sm3/day and 2000 sm3/day respectively, while the lower
and upper bounds for the polymer concentration are set to 0 kg/sm3 and
2.5 kg/sm3. Hence, the polymer injection rate ranges from 0 to 5000 kg/day.
Each production well is controlled by a reservoir fluid production rate target
with a lower limit of 0 sm3/day and an upper limit of 500 sm3/day. Bottom
hole pressure limits are imposed on the wells, namely a maximum of 500 bar
for the injector and a minimum of 150 bar for each producer. The production
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Parameter Value Unit

Dead pore space for polymer solution 0.1800 −
Maximum polymer adsorption value 7.5 · 10−4 kg/kg
Residual resistance factor of polymer solution 2.5 −
Reservoir rock density 1980 kg/rm3

Polymer mixing parameters 0.65 −

Table 1: Reservoir model parameters used in the polymer flooding simulations.

period for the reservoir is set to 50 months, and the control time step is taken
as 5 months. Therefore, there are Nu = (2 + 4)× 10 = 60 control variables in
total to solve for in (3). For the objective function (3a), we used the economic
parameters listed in Table 2.

Parameter Value Unit

Oil price rOP 500 USD/sm3

Price of gas production rGP 0.15 USD/sm3

Cost of polymer injection rPI 2.5 USD/kg
Cost of polymer production rPP 0.5 USD/kg
Cost of water injection or production rWI, rWP 30 USD/sm3

Annual discount rate dτ 0.1 −

Table 2: Economic parameters used in the numerical experiments.

Using the two different surrogate models for the objective function (3a) con-
structed by means of neural networks, namely DNNs and DNNv as explained
in Section 5, the optimization problem (3) is solved using the Adaptive-ML-
EnOpt algorithm. In this case, the Adaptive-ML-EnOpt algorithm for (3) using
DNNs and DNNv to approximate the objective function J from (3a) is denoted
by AML-EnOpts and AML-EnOptv, respectively. The EnOpt parameters
for both, the FOM-EnOpt and the two variants of the Adaptive-ML-EnOpt
method, are presented in Table 3. We remark that the tolerances ε, εi, and εo
are applied to the scaled quantities, i.e., the output quantities, for which the
respective stopping criteria in Algorithms 1 and 5 are checked, have already
been scaled as described in Section 6.1.

We compare the Adaptive-ML-EnOpt results with those of the FOM-
EnOpt algorithm for two different initial guesses u1

0 ∈ Dad and u2
0 ∈ Dad.

The initial solution u1
0 includes 700 sm3/day for the water injection rate at

the injection well, 150 sm3/day for the reservoir fluid production rate at each
production well, and 0.5 kg/sm3 for the polymer concentration (equivalently
350 kg/day for polymer injection rate) at the injection well over the simula-
tion period. Similarly, u2

0 includes 600 sm3/day for the water injection rate,
100 sm3/day for the reservoir fluid production rate, and 0.5 kg/sm3 for the
polymer concentration.
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Parameter Value

Initial step size β0 0.3
Step size contraction r 0.5
Maximum step size trials ν∗ 10
Initial control-type variance σj 0.001
Constant correlation factor ρ 0.9
Perturbation size N 100

Tolerances
FOM-EnOpt ε

Adaptive-ML-EnOpt inner iteration εi
Adaptive-ML-EnOpt outer iteration εo

10−6

10−6

10−2

Table 3: Parameters used in the FOM-EnOpt and Adaptive-ML-EnOpt algo-
rithms.

Figure 3 compares the values of the objective function during the outer iter-
ations of the FOM-EnOpt, AML-EnOpts, and AML-EnOptv strategies using
the initial solutions u1

0 and u2
0. Furthermore, the value J(uk) at the outer

iterate uk (denoted by “FOM value”) for the respective Adaptive-ML-EnOpt
method is depicted.

Since the Adaptive-ML-EnOpt algorithms only use an approximate sur-
rogate model JkML, the values of J and JkML are not necessarily the same for
the control uk. This behavior is especially apparent in Figure 3(b), where the
AML-EnOptv algorithm is examined for the initial guess u1

0. Here, after the
first outer iteration, the values J(u1) and J0

ML(u1) differ from each other by
a significant amount. A possible reason is that the surrogate model J0

ML does
not extrapolate well to the region where the first (inner) Adaptive-ML-EnOpt
iteration converged to. This further indicates that the found iterate u1 is far
from the initial solution u0, where the initial model J0

ML was trained. However,
since the Adaptive-ML-EnOpt algorithm uses evaluations of J in the stopping
criterion, the Adaptive-ML-EnOpt does not terminate but continues by train-
ing a new surrogate model using training data sampled normally around u1.
Hence, the new surrogate J1

ML tries to approximate the objective function J
well around u1. In each plot, we see that in the last two outer iterations of the
respective Adaptive-ML-EnOpt procedure, the FOM value and the Adaptive-
ML-EnOpt value agree to minimal deviations. This suggests that the surrogate
model approximates the full objective function well in the region of the (local)
optimum found by the Adaptive-ML-EnOpt method.

More so, in Figure 3, it is seen that both, the AML-EnOpts and the AML-
EnOptv algorithm, require considerably less (costly) outer iterations than the
FOM-EnOpt method. This leads to an improvement in the run time of the
method, which is detailed in Table 4. Besides the faster convergence of the
method, we also remark that the Adaptive-ML-EnOpt algorithms find local
optima with larger objective function values than the FOM-EnOpt algorithm.
However, since the objective function J is multi-modal, this is not guaranteed.
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Fig. 3: Comparison of the NPV values obtained during the outer iterations
of the FOM-EnOpt, AML-EnOpts, and AML-EnOptv procedures for two dif-
ferent initial guesses u1

0 ∈ Dad and u2
0 ∈ Dad. For each Adaptive-ML-EnOpt

procedure, the corresponding FOM value J(uk) at the current iterate uk of
the respective Adaptive-ML-EnOpt method is indicated as well.

We emphasize that each outer iteration of the Adaptive-ML-EnOpt algo-
rithm includes many inner iterations (see also Tables 4 and 5), which leads
to the large jumps in the objective function values between consecutive outer
iterations, as present in Figure 3.

Further comparisons in terms of function values, numbers of inner and
outer iterations, numbers of evaluations of the FOM function J and surrogate
approximations JkML, total run time, and speedup are presented in Tables 4
and 5.

With the different initial guesses u1
0 and u2

0, we found that the number of
outer iterations required by the FOM-EnOpt algorithm significantly differs.
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However, the Adaptive-ML-EnOpt methods require only 4 and 5 outer itera-
tions. This reduced number of outer iterations leads to a remarkable speedup in
the overall computation time Ttotal and is particularly reflected in the reduced
number of FOM evaluations, i.e., evaluations of the objective function J , which
require costly polymer flooding simulations. Although each outer iteration con-
sists of multiple inner iterations using the surrogate JkML, it does not contribute
substantially to the overall run time because evaluating the surrogate JkML is
very cheap.

Method FOM value
Surrogate

value
Outer
iter.

Inner
iter.

FOM
eval.

Surrogate
eval.

Ttotal

(min)
Speedup

FOM-EnOpt 6.400 · 108 − 28 − 2839 − 54.86 −
AML-EnOpts 7.013 · 108 6.968 · 108 4 233 407 12315 8.87 6.18
AML-EnOptv 7.185 · 108 7.168 · 108 5 312 509 14101 14.10 3.89

Table 4: Comparisons of the results from the different solution strategies
FOM-EnOpt, AML-EnOpts, and AML-EnOptv using the initial guess u1

0 and
N1 = N2 = 35 neurons in each hidden layer and 15 restarts for the neural
network training.

Method FOM value
Surrogate

value
Outer
iter.

Inner
iter.

FOM
eval.

Surrogate
eval.

Ttotal

(min)
Speedup

FOM-EnOpt 4.895 · 108 − 92 − 9310 − 135.77 −
AML-EnOpts 5.754 · 108 5.816 · 108 4 111 407 10837 9.85 13.78
AML-EnOptv 5.942 · 108 5.908 · 108 4 117 407 10033 11.05 12.29

Table 5: Comparisons of the results from the different solution strategies
FOM-EnOpt, AML-EnOpts, and AML-EnOptv using the initial guess u2

0 and
N1 = N2 = 25 neurons in each hidden layer and 35 restarts for the neural
network training.

For the initial solution u1
0, the optimizers obtained from the three solution

strategies are depicted in Figure 4. Further, the initial guess u1
0 is shown as a

reference.
The control variables obtained by the AML-EnOpts and the AML-EnOptv

algorithm are close to those of the FOM-EnOpt method, except for production
well 3 (see Figure 4(c)) and the water injection rate (see Figure 4(e)). For each
control variable, the values obtained via the AML-EnOpts and AML-EnOptv
procedures are close to each other. Together with the FOM values of AML-
EnOpts and AML-EnOptv presented in Table 4 and the evolution of the FOM
values for the two methods shown in Figure 3(a)-(b), this suggests that the
AML-EnOpts and the AML-EnOptv methods traverse almost the same path
in the control space Dad and find local optima close to each other.
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Fig. 4: Comparison of the optimal solutions obtained via the FOM-EnOpt,
AML-EnOpts, and AML-EnOptv algorithms using the initial guess u1

0, which
is depicted as the reference solution.
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Figure 5(a) depicts a comparison of the total field oil production for the
optimal solutions (in Figure 4) of the three solution methods. The total field
oil production by FOM-EnOpt, AML-EnOpts, and AML-EnOptv are 1.343 ·
106, 1.425 · 106, and 1.554 · 106 (in sm3), respectively. The solution obtained
by AML-EnOptv attains the highest oil production in total, followed by the
AML-EnOpts. The total back-produced water and polymer from operating the
five-spot field with the different optimal solutions are presented in Figure 5(b)
and Figure 5(c), respectively. Here, we found that the AML-EnOpts and AML-
EnOptv solutions are more economical and environmentally friendly than the
one provided by using the FOM-EnOpt method.
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Fig. 5: Comparison of the production data obtained from the different solu-
tion strategies FOM-EnOpt, AML-EnOpts, and AML-EnOptv using the initial
guess u1

0.
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To further investigate the effects of different neural network architectures
on the resulting NPV values, Figure 6 depicts the NPV values obtained by
the Adaptive-ML-EnOpt algorithm when using different numbers of neurons
in the hidden layers of the surrogate models DNNs and DNNv.

We observe that the AML-EnOptv method results are very similar, which
suggests that the DNNv-approach is more robust and leads to similar optimal
solutions independent of the neural network structure. In the case of the AML-
EnOpts algorithm, different numbers of neurons lead to results with a larger
variation. In particular, the number of outer iterations performed is different.
Hence, the architecture of the underlying network seems to have a significant
effect on the performance of the resulting AML-EnOpts algorithm.
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Fig. 6: Comparison of the Adaptive-ML-EnOpt procedures AML-EnOpts and
AML-EnOptv for different numbers of neurons in the hidden layers with fixed
initial guess u1

0.

The maximum, minimum, and average training and validation losses that
occurred in the AML-EnOpts and AML-EnOptv algorithm for the initial guess
u1

0 are presented in Table 6. The table shows the respective MSE losses for
different numbers of neurons in the hidden layers.

The results in Table 6 do not suggest a significant influence of the number
of neurons on the training and validation results. Further, the scalar- and
vector-valued cases, DNNs and DNNv respectively, perform similarly in overall
training and validation losses. However, we emphasize that, in the DNNv case,
the MSE loss cannot be related directly to the difference in the output function.
Instead, one has to take into account that the outputs of DNNv are summed
up to obtain the surrogate JkML, while the MSE loss is measured on the vector-
valued outputs of the neural network.

Altogether, the numerical experiments with different numbers of neurons
suggest that already small DNNs with only 20 neurons in each of the hidden
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layers yield appropriate results. In this specific application, we do not benefit
from increasing the complexity of the neural network. We have seen the same
behavior when using more than two hidden layers.

Method
Neurons
N1 = N2

Outer
iter.

Training loss Validation loss
Max. Min. Avg. Max. Min. Avg.

DNNs 20 4 1.2 · 10−4 1.3 · 10−6 5.3 · 10−5 5.4 · 10−3 6.7 · 10−5 2.3 · 10−3

DNNs 25 2 6.0 · 10−4 1.3 · 10−6 3.0 · 10−4 2.3 · 10−3 2.1 · 10−3 2.2 · 10−3

DNNs 30 7 7.9 · 10−4 8.5 · 10−7 1.7 · 10−4 6.6 · 10−3 1.7 · 10−3 3.6 · 10−3

DNNs 35 4 1.8 · 10−4 6.1 · 10−6 8.2 · 10−5 5.5 · 10−3 3.7 · 10−4 2.7 · 10−3

DNNv 20 5 1.8 · 10−3 2.1 · 10−5 5.2 · 10−4 6.9 · 10−3 1.2 · 10−3 4.2 · 10−3

DNNv 25 6 9.9 · 10−4 1.5 · 10−5 4.1 · 10−4 6.4 · 10−3 9.4 · 10−4 3.6 · 10−3

DNNv 30 5 9.0 · 10−4 9.9 · 10−6 4.0 · 10−4 1.0 · 10−2 5.2 · 10−4 4.3 · 10−3

DNNv 35 5 6.0 · 10−4 1.1 · 10−6 2.2 · 10−4 8.8 · 10−3 4.6 · 10−4 4.3 · 10−3

Table 6: Maximum, minimum, and average MSE loss in the AML-EnOpts
and AML-EnOptv algorithm with different numbers of neurons in the hidden
layers of the neural networks DNNs and DNNv for fixed initial guess u1

0. The
number of hidden layers is fixed to two.

7 Conclusion and future work

In this contribution, we presented a new algorithm to speed up PDE-
constrained optimization problems occurring in the context of enhanced oil
recovery. The algorithm is based on adaptively constructed surrogate mod-
els that make use of deep neural networks for approximating the objective
functional. In each outer iteration of the algorithm, a new surrogate model is
trained with data consisting of full-order function evaluations around the cur-
rent control point. Afterwards, an ensemble-based optimization algorithm is
applied to the surrogate to obtain a candidate for the next iteration. We per-
form full order model evaluations to validate whether the resulting controls
correspond to a local optimum of the true objective functional. These function
evaluations also serve as training data for constructing the next surrogate.

Our numerical results confirm that the described algorithm can accelerate
the solution of the enhanced oil recovery optimization problem. At the same
time, in our numerical experiments, the procedure produces controls with even
larger objective function values than those obtained using only costly full-order
model evaluations. However, we should emphasize that such an improvement
in the objective function value is not guaranteed and, in our case, results from
the multi-modal structure of the objective functional.

The investigated five-spot benchmark problem served as a proof of concept
for our Adaptive-ML-EnOpt algorithm, where FOM evaluations were rela-
tively quickly accessible, and the input dimension was of moderate size. Future
research is thus devoted to more involved numerical experiments with more
significant complexity.
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As indicated in the optimization problem description, we focused on a sce-
nario with fixed geological properties. However, in practical applications, these
geological parameters are usually unknown and typically treated by ensemble-
based methods, where the ensemble is to be understood not only with respect
to perturbations of the controls for approximating the gradient but also with
respect to different samples of geological properties. One of the central future
research perspectives is incorporating such geological uncertainty in our algo-
rithm. The main challenge is the high dimension of the space of possible
geological parameters. Naively using these parameters as additional inputs
for the neural network is thus not feasible. Future research might consider
reducing the dimension of the space of geological parameters by incorporating
additional information on the distribution of such parameters and passing the
reduced variables to the neural networks.

Furthermore, replacing neural networks as surrogate models for the objec-
tive function, for instance, by polynomial approximations obtained via linear
regression or by different machine learning approaches, such as kernel meth-
ods [52], could be investigated further. The Adaptive-ML-EnOpt algorithm is
formulated in such a way that replacing the surrogate model and its training is
readily possible. Any approximation of the objective function built from eval-
uations of the true objective function is feasible and can directly be used in
the algorithm. In addition, the inner iterations are not restricted to the EnOpt
procedure but can also be performed using different optimization routines.
However, we should emphasize that in the current formulation, no informa-
tion on the exact gradient, neither of the true objective functional nor the
surrogate model, is required. This might change when employing different opti-
mization routines. Moreover, the presented approach is not restricted to the
NPV objective functional in enhanced oil recovery but can be generalized to
any scalar-valued quantity of interest. The algorithm might be of particular
relevance in cases where no direct access to the underlying PDE solutions is
possible, and no error estimation for the surrogate model is available.
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