DrillWell Drilling and Well Centre for Improved Recovery

Outline

- Introduction
- Key results
- Drilling&Wells and IOR

IOR Norway 2018 April 24-25, 2018

By Sigmund Stokka, Manager DrillWell

Vision

Unlock petroleum resources through better drilling and well technology

Objective

Improve drilling and well technology providing improved safety for people and the environment and value creation through better resource development, improved efficiency in operations and reduced cost

Main targets:

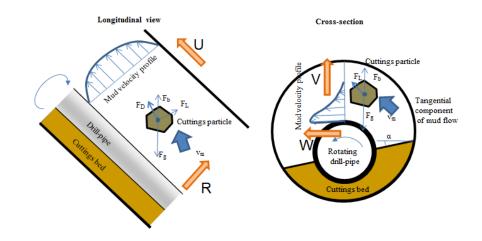
- Cost reduction
- Improved recovery
- Efficient field development

FOR IMPROVED RECOVERY

The Research Council of Norway

DrillWell R&D targets

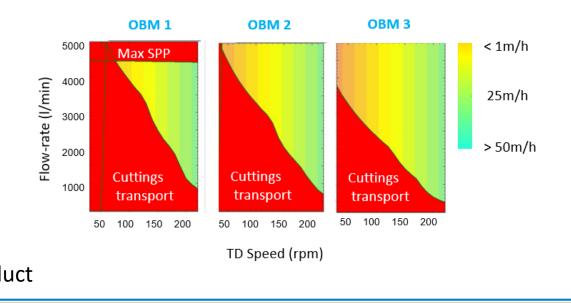
- Drilling process optimization
- Well control
- Well integrity
- Permanent plugging and abandonment of wells (P&A)/Slot recovery



Drilling process optimization

Modelling and evaluation of drilling and well processes (transient models)

- Cuttings transport
- Well hydraulics
- Drill-string torque and drag forces
- Drill-string vibration
- Risk based optimization of drilling parameters
- Evaluation of field cases
- ≻Will imply
 - increased drilling speed
 - reduced risk of incidents
 - longer productive well sections



Drilling process optimization *Applications*

- Optimize weight on bit and rotational speed (DrillOpPlan)
- Diagnostic of deterioration of drilling conditions (DrillScene*) (improvement)
- Control of drilling machines for safe operations (DrillTronics*) (improvement)
- Improvement of data exchange capabilities between service companies (DDHub)

DrillTronics on Songa Enabler

Background

- DrillTronics is assisting the driller by actively controlling the drilling machines to stay within the drilling margins
- DrillTronics permanently installed on Statfjord C 2014-17
- Installation on the semi- submersible drilling rig Songa Enabler for exploration drilling in the Barents Sea 2017

> Objective

- Enable full DrillTronics functionality to work on floating rigs
- Enable DrillTronics to read and utilize automatic rheology data
- Install, test & verify on Songa Enabler

New models from DrillWell

- Transient torque & drag for drill-string elasticity
- Casing running
- New hook-load correction for automatic friction test

Results

- An automated data collection system was successfully used
- DrillTronics software ensured automated drilling process control
- The drillers were able to optimize and enhance the safety of the drilling operations
- Statoil estimated to have saved around NOK 100 million on two wells, using several drilling automation technologies
- Future
 - This year DrillTronics on Songa Enabler will be used for more deviated wells

Drilling Data Hub Demonstrations DEMO 2000 project

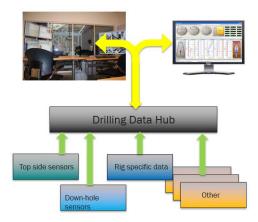
Background

- Multiple vendors involved in drilling operations; need for interoperability
- Set-up for drilling operations often changes; need for adaptivity

➢ Objective

• Demonstrate multi-vendor integration between data providers and data consumers using full version of Drilling Data Hub using OpenLab Drilling

≻ Why


• Need for easy and reliable access to real-time data for processing by more or less complex applications

> What

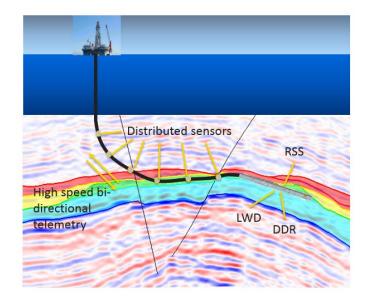
Real-time data acquisition and aggregation based on semantical descriptions

≻ How

Real-time data acquisition and aggregation based on semantical descriptions

Geo-steering for IOR Petromaks2 project

Background


- Geo-steering decisions need to balance production potential vs drilling and completion risks
- Uncertainties should be taken into account in a consistent manner
- Improvements in downhole logging capabilities (Deep EM, high speed telemetry) and processing capabilities

> Objective

 The primary objective of this project is to develop improved methodology for geo-steering by continuously updating the earth model based on LWD measurements including Deep EM

Benefits

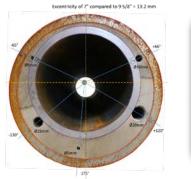
- Better methodology for using Deep EM with other measurements for geo-steering that treats uncertainty consistently
- The long-term result will be improved geo-steering in complex fields, which will result in improved oil recovery

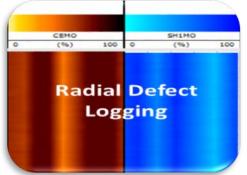
Well Integrity and P&A

Tubing left in hole experiments

How did we do it?

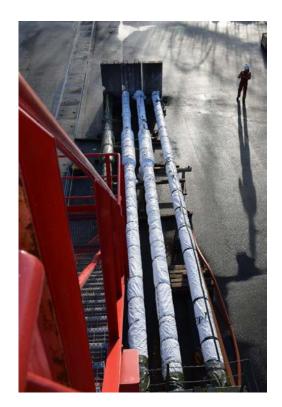
- 1. Used two assemblies, one with and one without control lines and cable clamps (inclined to 85°)
- 2. Used a slow pump rate ≈ 2 bbl/min and s.g. 1.92 cement to displace s.g. 1.20 brine
- 3. Performed pressure and leakage tests by pumping high pressure water to 110 bar
- 4. After leakage tests: Assemblies cut through at selected positions to inspect how well the cement had displaced the brine in tubing and annulus





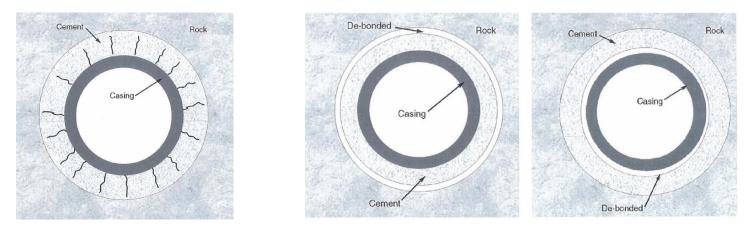
Well barrier evaluation *PILOT logging experiment – Baker Hughes*

- Prepared test cells with known channels
- Pilot test with Baker Hughes
- Offer full scale test program



Full-scale cementing experiments

- Cementing experiments investigating effect of inner-string eccentricity and hole enlargement on cement placement
- Four instrumented assemblies, each 24 m long:
 - 7" tubing in 9 5/8" casing
 - 16" casing as washout
- Assemblies filled with viscous spacer that was displaced by cement slurry pumped using the Ullrigg P&A Laboratory batch mixer and Ullrigg mud pump



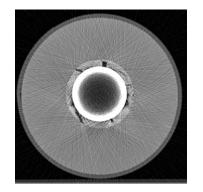
Temperature and pressure cycling of cement sheaths

- Simulations and modeling

Figures from Ravi et al. (2002) SPE-75700

- Radial cracks due to temperature and pressure increase
- Debonding due to temperature and pressure decrease

Bois et al. (2011) SPE 124719



Visualization by X-ray Computed Tomography (CT)

A tomographic method that provides specific information on size and location of potential leak paths

- $\circ~$ In-plane resolution \approx 100-200 $\mu m~$ (w. 140 kV)
- Approximately 200 images per sample

Case - Flow through partial microannulus *Velocity: Magnitude (m/s) Velocity: Magnitude (m/s)* 20 21 16 16 12 12 8 ^Z x^Y 20 Pa pressure drop 200 Pa pressure drop Centre for lell Research-based Innovation

The Research Council of Norway

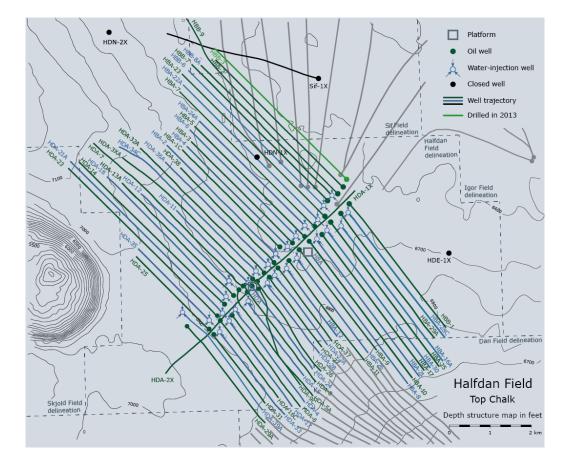
DRILLING AND WELL CENTRE FOR IMPROVED RECOVERY

Improved oil recovery

Reduction of well construction & operational cost

- Less expensive wells will imply reduced field development cost
 Marginal fields can be developed
- Less expensive well operations will imply reduced field operational cost
 - ➤More oil can be reached through side-tracks
 - ➢Well maintenance will increase well productivity
 - ➢ Field life time will be extended

Implication: Increased recovery of oil and gas



Wells assisting EOR

Cheaper wells may assist EOR

- Small well-to-well distance in multilaterals
- Horizontal injectorproducer pairs

Halfdan field, Denmark Reference: Danish Energy Agency "Oil and Gas Production in Denmark" (2013)

19

Improved well integrity and P&A

- Improved well integrity will imply increased well lifetime and reduced well maintenance cost
- Reducing cost for slot recovery and P&A will release budgets for well construction

Implication: Increased recovery of oil and gas

Conclusion

- Safe and cost efficient well construction contributes to IOR
- Attractive to combine low cost wells with EOR (low well to well distance)

Acknowledgement

The Research Council of Norway, AkerBP, ConocoPhillips, Statoil and Wintershall are acknowledged for financing the work through the research centre DrillWell - Drilling and Well Centre for Improved Recovery, a research cooperation between IRIS, NTNU, SINTEF and UiS.

