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Preface 

This thesis has been written to partially fulfill the graduation requirements of 
the Philosophiae Doctor (PhD) degree at the Department of Petroleum 
Engineering, Faculty of Science and Technology, University of Stavanger, 
Norway. I was engaged in writing this thesis from May to October 2017. 

This research was conducted under the main supervisor, Prof. Reidar B. 
Bratvold at the University of Stavanger and the co-supervisor, Dr. Geir Nævdal 
at the International Research Institute of Stavanger. It was funded by the 
National IOR Centre of Norway from October 2014 to October 2017. The work 
was conducted mainly at the University of Stavanger and partially at the 
University of Texas at Austin from February to July 2017. 

This work intends to illustrate and discuss the implementation of decision 
analysis tools to manage geological and petrophysical uncertainties for better 
decision making in reservoir management contexts. I believe that this work will 
be of great interest to both managers and engineers in oil and gas companies 
and to scholars and researchers at academic and research institutes, who are 
engaged in improving the quality of oil and gas operation related decisions. 

 

Aojie Hong 

Stavanger, November 7, 2017  
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Abstract 

Reservoir management (RM) is a decision-oriented activity where decision 
makers use their current knowledge to search for production strategies that 
maximize the value of hydrocarbon production from a reservoir. Two central 
components of RM are history matching (HM) and production optimization 
(PO). HM draws on information from data. The information is then used to 
support decisions on production strategies. The optimal production strategy is 
identified through PO. 

Decisions will not be good unless they account for relevant and material 
uncertainties in a given decision context. Uncertainty is a result of not having 
perfect (i.e., complete) information. Although the oil and gas industry has long 
been aware of the importance of uncertainty understanding and management, 
decision-driven approaches that include consistent uncertainty quantifications 
are not commonly or comprehensively used. The intent of using decision-driven 
approaches is to manage uncertainties for good decision making. 

This work intends to address three of the main challenges of using decision 
analysis (DA) tools for managing geological and petrophysical uncertainties in 
RM. The first challenge is in describing the geological and petrophysical 
uncertainties using probability distributions that result from HM. The second 
challenge is in the computational complexity of modeling flow behaviors and 
solving for the optimal production strategy when given a description of 
geological and petrophysical uncertainties. The third challenge is in the PO 
approach that can allow for learning over time. The ultimate goal of this work 
is to illustrate and discuss how these challenges can be overcome and to 
facilitate the application of decision quality in RM contexts. 

The first challenge is addressed through illustrating and discussing the 
implementation of probabilistic HM approaches. Unlike a deterministic HM 
approach which results in a single combination of production model parameters 
that best matches the given production data, a probabilistic HM approach 
produces numerous combinations of production model parameters, each of 
which has a probability, to quantify the geological and petrophysical 
uncertainties. Modeling with these combinations of production model 
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parameters propagates the geological and petrophysical uncertainties to the 
uncertainty in future production. 

The second challenge is addressed through illustrating and discussing the 
implementation of robust optimization (RO) algorithms and proxy production 
models. RO approaches identify the optimal production strategy that maximizes 
the expected value over many geological and petrophysical realizations. To 
speed up the process of solving an RO problem, we use a proxy production 
model to supplement a grid-based reservoir model. The proxy model captures 
only the most relevant physics and mechanisms affecting production prediction 
and thus is much more computationally attractive than the grid-based reservoir 
model. 

The third challenge is addressed through illustrating and discussing the 
implementation of a fully structured reservoir management (FSRM) approach. 
The FSRM approach is based on the fully structured decision tree for a 
sequential decision-making problem in a RM context. It allows for learning 
over time by considering both the uncertainties associated with current 
available data and the uncertainties associated with future data. Therefore, the 
current decision does not depend only on the uncertainties that a decision maker 
has learned so far but on the uncertainties that the decision maker will learn in 
the future. The FSRM approach provides the optimal production strategy, 
whereas the state-of-the-art RM approach—closed loop reservoir management 
(CLRM)—might give a sub-optimal production strategy. Furthermore, we 
illustrate and discuss an a priori analysis on information valuation, known as 
value-of-information (VOI) analysis, in RM contexts. It evaluates the benefits 
of collecting additional information before one gathers the data and makes a 
decision. It can also be used to assess the value of accounting for learning over 
time in PO. 

This work presents numerous examples to demonstrate the value of applying 
DA tools in RM. The main contribution of this work is the illustration and 
discussion of the implementation of decision-driven approaches for good 
decision making in RM contexts. To achieve this purpose, we: 

1. show how to integrate model uncertainty in probabilistic decline curve 
analysis for unconventional oil production forecasting; 
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2. illustrate and discuss how to use a capacitance-resistance model as a 
proxy model to speed up the process of robust production optimization; 

3. implement a fast analysis of the optimal improved-oil-recovery start 
time using a two-factor production model and the least-squares Monte 
Carlo algorithm; 

4. illustrate and discuss how to implement a robust discretization of 
continuous probability distributions for VOI analysis; 

5. show how to apply the VOI concept for production model parameter 
updating through HM. 

Although other challenges remain in implementing some specific approaches 
in a real-world setting, we believe that this work is useful in conveying to RM 
professionals the benefits and implementation of DA techniques, and it can be 
used as guidance for future research.  
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1 Introduction 

1.1 Motivation 
The goal of an oil company is to maximize shareholder or stakeholder value by 
maximizing the net present value (NPV), which in turn can be maximized by 
minimizing capital investments and operating expenses while maximizing 
economic recovery of hydrocarbon from a reservoir through reservoir 
management (RM). Various definitions of “reservoir management” have been 
proposed (Haldorsen and Van Golf-Racht 1989, Robertson 1989, Wiggins and 
Startzman 1990, Satter et al. 1994). These definitions all emphasize that RM is 
a decision-oriented activity where a decision maker (DM) seeks a production 
strategy that maximizes the value (commonly quantified by NPV) of 
hydrocarbon production from a reservoir based on the DM’s current 
knowledge. 

A common practice is to use a production model to describe the flow behaviors 
in a reservoir. Such a model can be a decline curve model or a reservoir 
simulation model. It is assumed that once the values for the model parameters 
have been assessed, the model itself will correctly predict future production.1 
Model parameters are updated through history matching (HM), 2  and the 
optimal production strategy is determined through production optimization 
(PO) on the history-matched model. Therefore, HM and PO are the two central 
components of RM. 

Begg et al. (2014) provided a formal definition of uncertainty— “Not knowing 
if a statement (or event), is true or false”—which we will use in this work. 
Numerous papers have shown the importance of uncertainty quantification in 

                                                      
1 Nobody really believes that this is the case, but it is viewed as a reasonable assumption 
that will yield “good enough” results. 
2 In other modeling contexts, the “matching” of models to measured data is usually 
referred to as model calibration. We will use “history matching” and “model 
calibration” interchangeably. Originally, HM referred to the adjustment of production 
model parameters to reproduce the historical production data (rates and pressures) as 
closely as possible. Today, the term HM is often used in a broader context and includes 
model calibration using all relevant data and information (seismic data, log data, tracer 
behavior, etc.). 
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forecasting. Skov (1995) concluded that the quality of the production forecast 
can be improved if one can quantify the range of uncertainty and obtain 
feedback on the accuracy of the forecast. Jonkman et al. (2010) related a 
company’s practices to its economic performance and found that the companies 
that rigorously took uncertainty into account and planned for multiple 
possibilities when planning for development, appeared to obtain better 
production forecasting and decision making, and consequently had higher 
economic performance. Wolff (2010) noted that it is more meaningful to 
generate multiple outcomes on a set of models based on uncertainties than to 
find a single ‘‘true’’ answer. Three comparative studies were done for the 
PUNQ-S3 problem (Floris et al. 2001, Barker et al. 2000, Hajizadeh et al. 
2010). In these studies, uncertainty quantification methods were applied to a 
synthetic model. They illustrated the use of multiple history matched models 
for uncertainty quantification. 

After fast growth in the understanding of uncertainty within the oil and gas 
(O&G) industry, many authors introduced the tools that can be used to capture 
both geological3 and non-geological uncertainties. Clarkson and McGovern 
(2005) presented a coalbed methane prospecting tool that integrates reservoir 
simulators with a reservoir model, Monte Carlo simulation, and economic 
modules, and an infill-well locating tool that can evaluate the locations of an 
infill-well by combining simulations and economics. When time constraints or 
a lack of reservoir data make it infeasible to forecast by full-field reservoir 
simulation, these two tools will be very useful. Jannink and Bos (2005) 
suggested a fully probabilistic methodology that is able to model both discrete 
and continuous uncertainties. Their work integrated the pollutant discharge 
forecast uncertainties and decision making of asset investment, which means 
that the discharge risk can be converted to financial risk. A model introduced 
by Morgan (2005) can be used to predict a range of oil price in both the short 
term and the long term, one of the biggest non-geological uncertainties in O&G 
economics. His model utilized the oil price data from 1986 to 2003.  

Numerous authors have emphasized that it is essential that relevant and material 
uncertainties (no matter geological or non-geological) need to be represented 
by multiple realizations or scenarios for decision making. This thesis focuses 

                                                      
3 For brevity, this thesis uses “geological” to mean “geological and petrophysical.” 
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on managing the geological uncertainty for making good decisions in RM 
contexts. 4  Non-geological uncertainty has been addressed in Thomas and 
Bratvold (2015), which accounted for the uncertainties in future oil and gas 
prices in a gas cap blowdown decision making context. 

The O&G industry has long been aware of the importance of uncertainty 
management, but decision analysis (DA), which leverages consistent 
probabilistic approaches as a way to manage uncertainties for good decision 
making, is not commonplace in the industry because of technical and non-
technical challenges. This thesis simply uses the phrase “uncertainty 
management” to refer to “decision-focused uncertainty management,” meaning 
that the intent of uncertainty management is for making good decisions, as 
reflected in the statement by Bratvold et al. (2009) that quantifying uncertainty 
has no value in and of itself and value can be created only through our decisions. 

Based on our communication with many industry insiders, an example of non-
technical challenges is that many people are not comfortable working with 
probabilities and thus refuse to use a probabilistic approach.  Non-technical 
challenges are outside the scope of this thesis. From the technical challenges 
arise the following questions, which form the research problems of this thesis: 

1. How can geological uncertainty in HM be managed? 
2. How can geological uncertainty in PO be managed? 
3. How can DA be incorporated with RM? 

1.2 Research Goals 
Given that value can be created only through the implementation of high-
quality decisions, which in turn rely on high-quality uncertainty assessments, 
we intend to use decision-driven approaches to manage uncertainties for good 
decision making. Through a literature review, we have identified three main 
challenges to making high-quality RM decisions: 

                                                      
4 A good decision is “an action we take that is logically consistent with our objectives, 
the alternatives we perceive, the information we have, and the preference we feel” 
(Bratvold and Begg 2010). 
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1. describing geological uncertainty using probability distributions as a 
result of HM; 

2. computational complexity of modeling flow behaviors and solving for 
the optimal production strategy when a description of geological 
uncertainty is given; 

3. formulating a production optimization approach that can allow for 
learning over time. 

The goal of this research is to illustrate and discuss how these challenges can 
be overcome and to facilitate the application of decision quality in RM contexts. 
To achieve this goal, we will address these challenges through 

1. illustrating and discussing the implementation of probabilistic HM 
approaches, with a focus on how to integrate model uncertainty in 
probabilistic decline curve analysis for unconventional oil production 
forecasting; 

2. illustrating and discussing the implementation of robust optimization 
(RO) algorithms and proxy production models, with a focus on how to 
use a proxy model to speed up the process of robust production 
optimization; 

3. illustrating and discussing the implementation of the fully structured 
reservoir management (FSRM) approach, with focuses on how to use 
a two-factor production model and the least-squares Monte Carlo 
(LSM) algorithm for fast analysis of optimal improved-oil-recovery 
(IOR) start time and on how to apply the value-of-information (VOI) 
concept for production model parameter updating through HM. 

We are concerned with providing good approaches to manage uncertainties for 
good decision making. A good approach must be both useful and tractable. By 
“useful,” we mean “providing clear insight for decision making” and by 
“tractable,” we mean that the analysis can be done with the time and resources 
available. 

1.3 Thesis Structure 
This thesis is structured in the form of paper collection, with two parts. The first 
part is an introduction summarizing the research and clarifying how the topics 
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of the included papers are interrelated. The second part consists of 5 papers 
which have been published or submitted, or will be submitted for journal 
publications. 

The reminder of the thesis is divided into the following chapters: 

 Chapter 2 reviews deterministic and probabilistic HM approaches and 
introduces an approach to integrate model uncertainty in probabilistic 
HM using the moving window approach and minimum likelihood 
estimation (MLE); 

 Chapter 3 reviews RO with the ensemble-based optimization (EnOpt) 
algorithm and proposes a workflow of using a capacitance-resistance 
model (CRM) to speed up the RO process for waterflooded production; 

 Chapter 4 reviews the state-of-the-art reservoir management tool—
closed loop reservoir management (CLRM), discusses how it will 
improve decision making, and compares it with FSRM; 

 Chapter 5 reviews the concept of VOI, which can be used to value the 
information in an RM context, and presents a workflow of assessing it 
using state-of-the-art HM and PO tools; 

 Chapter 6 provides an overview of the research papers included in the 
second part of the thesis; 

 Chapter 7 summarizes and concludes this research; 
 Chapter 8 presents a discussion and suggestions for future research. 
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2 Managing Geological Uncertainty in 
History Matching 

The purpose of a production model (a decline curve model, a reservoir 
simulation model, etc.) is to predict future production for our decisions on 
production strategy. Thus, the quality of a production model can affect our 
choice of the optimal production strategy. The quality of a production model 
means the similarity of the predicted production to the real production. This in 
turn relies on the similarity of the geological properties described by the model 
and its corresponding parameters to the real geological properties of a field. The 
higher similarity the model has, the higher quality the model has. 

A production model is mathematically formulated based on our understanding 
of the underlying physical principles. Its parameters are based on our 
knowledge of the geological properties of a field. This knowledge comes from 
information provided by seismic data, core data, well log data, production data 
and so on. Our research focuses on the information provided by production 
data. The parameter settings of a production model are usually determined 
through an HM process where the model parameters are tuned such that it can 
closely reproduce historical production. The goal of HM is to correctly forecast 
production so that the forecast can be used for decision making. 

However, the data we can access today represent only a part of the reservoir, 
and we can never know the subsurface in all its detail. Thus, geological 
uncertainties always exist in a production model, although HM can reduce the 
uncertainties. Because of the uncertainties, a more realistic goal of HM is to 
quantify our lack of knowledge (i.e., to quantify our uncertainty) about the 
future production, for the purpose of making good decisions. 

2.1 History Matching Approaches 

2.1.1 Deterministic History Matching Approaches 
In a deterministic world, the goal is to identify the true nature of the relevant 
parameters of a given model. We do this by applying HM, which is an 
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optimization process where the objective function is a predefined loss function 
that we seek to minimize by tuning the model parameters. The model with its 
parameter settings which minimizes the loss function is referred as the best fit 
model. 

2.1.1.1 Least Squares Estimation 

An extensively used HM approach is least squares estimation (LSE) where the 
loss function is defined as the squared difference between model forecast and 
data: 

  (2.1) 

where  is the loss function of LSE which is a function of the vector of 
model parameters ,  is the model forecasted production at time step , 

 is the measured production (i.e., the data) at time step , and  is the total 
number of time steps of data. 

2.1.1.2 Maximum Likelihood Estimation 

Another approach is maximum likelihood estimation (MLE), which aims to 
maximize the likelihood function (i.e., the probability of observing the data 
given a set of model parameter settings). Assuming that the data measurements 
are independent, we can define the likelihood function as 

  (2.2) 

where  denotes probability, and  denotes the conditional probability 
of measured data  given parameters . Applying a Gaussian random error for 
the measurement with zero mean and standard deviation (SD) , we obtain 

  (2.3) 
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Thus, 

  (2.4) 

Maximizing the likelihood function is equivalent to minimizing 

  (2.5) 

If , Eq. 2.5 can be reduced to Eq. 2.1. Therefore, LSE is a 
special case of MLE. The advantage of using Eq. 2.5 instead of Eq. 2.1 is that 

 acts as a weighting factor so that a more accurate data point (i.e., with 
smaller ) will receive more weight than a less accurate data point (i.e., with 
larger ).  

2.1.1.3 Maximum A Posteriori 

In the maximum a posteriori approach (MAP), we work on a posterior 
distribution. The posterior (i.e., the probability of a set of model parameter 
settings given the data) is derived using Bayesian inference that requires 
assessments of likelihood and prior: 

  (2.6) 

where  is the prior that describes our a priori knowledge about the model 
parameters and  is the preposterior.5 Because the preposterior 
is merely a normalizing constant, it can be ignored for maximization. Thus, 
MAP maximizes . In contrast to MLE (maximizing 

), MAP includes  that can be regarded as a weighting 
factor for the likelihood. If we have an uninformative prior (i.e., a uniformly 

                                                      
5  More detailed description of the terms “prior,” “likelihood,” “posterior,” and 
“preposterior” can be found in Paper V and in Raiffa and Schlaifer (1961). 
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distributed prior),  is independent of the value of  and is constant. In such 
case, maximizing  is equivalent to maximizing 

. Therefore, MLE is a special case of MAP. 

We have shown that LSE, MLE, and MAP are related to each other and all 
based on Bayes’ theorem. Although probabilities are considered, these 
approaches give a single estimate rather than a distribution, which precludes 
uncertainties from being included in further analysis. 

2.1.2 Probabilistic History Matching Approaches 
In HM, uncertainties come from measurement (or observational) errors, non-
uniqueness of inverse modeling, and the production model itself. By 
“measurement error,” we mean the difference between a measured value of a 
quantity and its true value. It describes the inherent variability in the results of 
a measurement process. By “non-uniqueness of inverse modeling,” we mean 
that multiple good fits to the data can be obtained with various combinations of 
model parameter settings. The third source of uncertainty (the production 
model) will be discussed in detail in Section 2.2. For now, the production model 
is a given. The mentioned uncertainties should be reflected by the model 
parameters with their distributions. 

2.1.2.1 Non-uniqueness in Inverse Modeling 

Tavassoli et al. (2004) presented the issue of non-uniqueness in inverse 
modeling (which they called the inherent uncertainty in HM) and demonstrated 
that different combinations of model parameter values, which give almost 
equally good HM results, can give different forecasts. To address this, 
Sayarpour et al. (2011) started with different sets of initial guesses of model 
parameters to history match data to generate numerous history matched 
solutions of model parameters. This approach provides a probability 
distribution that reflects the non-uniqueness issue, and it is applied in Paper I. 

2.1.2.2 Bootstrap Method 

Cheng et al. (2010) and Jochen and Spivey (1996) used the bootstrap method 
to incorporate measurement errors in HM. The bootstrap method is a type of 



Managing Geological Uncertainty in History Matching 

10 

Monte Carlo (MC) method for approximate Bayesian inference (Hastie et al. 
2009) and assumes non-informative prior. The bootstrap method is applied 
through the following procedure: 

1) Generate a sampled dataset by resampling data points from the original 
dataset with replacement; 

2) Use LSE to history match the sampled dataset to obtain a set of model 
parameter settings; 

3) Repeat Steps 1 and 2 numerous times to obtain numerous sets of model 
parameter values; 

4) Use these sets of model parameter values as MC samples representing 
the distributions of the model parameters. 

The bootstrap method does not require that explicit distributions be assigned to 
the measurement errors because they are approximated by the perturbed data 
(Hastie et al. 2009). 

2.1.2.3 Probabilistic MLE Approach 

Considering that a noisier data subset should be given less weight than a less 
noisy data subset, and that a data subset with sharp charges is less reliable and 
thus should be given less weight than a data subset with gradual changes, we 
propose an approach named the probabilistic MLE approach (P-MLE). A 
practical issue in using MLE is that distributions must be assigned to the 
measurement errors, which are seldom known a priori. To approximately 
estimate the measurement error distributions, we assume that measurement 
errors are independent and normally distributed, and we apply a moving 
window approach to estimate their SDs. Figure 2.1 illustrates the moving 
window approach. For example, we want to estimate the measurement error SD 
at time . If we use a half window size (HWS) of 2, we take the two previous 
data points (the data points at times  and ), the two next data points 
(the data points at times  and ), and the data at time  to form a data 
subset. The SD of this data subset is used as the measurement error SD at time 

. A large number of sampled datasets can be generated by sampling from a 
normal distribution with the original data point as its mean, and the SD 
estimated using the moving window approach for each data point. MLE is then 
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used to history match each sampled dataset, yielding many sets of model 
parameter settings. This proposed approach is applied in Paper I. 

 
Figure 2.1—Moving window approach for approximating measurement error SDs. 

2.1.2.4 Ensemble Kalman Filter 

When a priori knowledge is considered, a fully Bayesian approach should be 
used. Approaches for Bayesian HM include the ensemble Kalman filter (EnKF) 
and Markov-chain Monte Carlo (MCMC). The present work applies EnKF 
because it is easily implemented with any production model, it is 
computationally attractive, and it can handle large datasets and a considerable 
number of model parameters. The first use of EnKF in petroleum engineering 
is probably that described by Lorentzen et al. (2001). Following its publication, 
this method attracted significant attention, and the number of papers applying 
and discussing EnKF increased rapidly.  

The following briefly reviews EnKF. For a comprehensive introduction to 
EnKF, see Evensen (2009). Aanonsen et al. (2009) provided an extensive 
review of the application of EnKF in reservoir engineering. 

2.1.2.4.1 EnKF Formulation 

The basic idea behind EnKF is based on the Kalman (1960) filter. The Kalman 
filter is a solution to estimating the state6 of a process in a recursive way and is 
                                                      
6 Given a dynamic system, a state is an unobservable (in most cases) quantity that is 
required, and thus must be determined, to predict the system behavior (i.e., the future 
state). A state can be a scalar or a vector. 
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designed for linear filtering and prediction problems with discrete data. This 
method seeks an optimal weight between measured data and model forecast. 
Normal distribution is used to describe an uncertain quantity, say the production 
rate , at a certain time: the forecasted  by a model is normally distributed 

, where  is the model forecasted mean and  is 
the SD of model forecast, and the measured  by a device is normally 
distributed , where  is the measured mean and  is 
the SD of measurement error. A linear combination of the model forecast and 
measured data can be constructed as 

  (2.7) 

where  is the updated estimate of  given measured data, and  (the 
Kalman gain) is a weighting factor for the model forecast versus the measured 
data.  is also normally distributed , where  
is the updated mean and  is the updated SD. Given Eq. 2.7,  and 

 can be calculated, respectively, 

  (2.8) 
 (2.9) 

If we consider the best estimate as the one with the smallest SD,  is 
minimized by adjusting , yielding 

  (2.10) 

Replacing  in Eqs. 2.8 and 2.9 with , we obtain the mean and SD of a 
normal distribution for the updated estimate. 

Another way to obtain Eqs. 2.8, 2.9, and 2.10 is to start with Bayes’ theorem: 

  

 

(2.11) 

Using the properties of conjugate normal distributions, we can obtain 
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(2.12) 

and 

 
 

 

(2.13) 

Eq. 2.12 and Eq. 2.13 can be rewritten as Eqs. 2.8 and 2.9, respectively. Using 
the Kalman filter, Bayesian inference is implicitly conducted. 

Evensen (1994) introduced EnKF as a MC representation7 of the Kalman filter. 
The prior distribution is represented by a set of realizations of model parameters 
(i.e., the prior or initial ensemble). The posterior distribution is represented by 
the updated realizations of model parameters (i.e., the posterior or updated 
ensemble), which are obtained by (Burgers et al. 1998) 

  (2.14) 

where matrix  consists of the vectors containing the updated states, updated 
model parameters, and updated observations corresponding to each realization 
in the posterior ensemble; matrix  contains the predicted states by forward 
modeling, model parameters, and predicted observations by forward modelling 
corresponding to each realization in the prior ensemble;  is the Kalman gain 
matrix, which weighs the influences of the prior predicted observations and the 
real-time observations (i.e., measured data);  is a matrix containing the 
perturbed observations;8  and  is an operator that links  to the predicted 
observations. As does Eq. 2.7, Eq. 2.14 describes a linear combination of the 
prior and the observations. The weighing factor  is calculated as 

  (2.15) 

                                                      
7 By “MC representation” we mean that a probability distribution is represented by its 
corresponding MC samples. 
8 When the EnKF is applied, an observation has to be perturbed with its corresponding 
statistics in order to avoid insufficient variance (Burgers et al. 1998). 



Managing Geological Uncertainty in History Matching 

14 

where  is the covariance matrix of  encoding the covariance matrix of the 
prior predicted observations, and  is the covariance matrix of the 
observations. As the measurements become noisier (i.e., the variance of an 
observation increases) or the variance of a prior predicted observation 
decreases, more weight is given to the prior; otherwise, more weight is given to 
the observations. 

EnKF embodies the prior in , the likelihood in  (when the model noise is 
ignored), and the posterior in ; and the preposterior is a normalizing constant 
of the posterior. Thus, Bayes’ rule describing the relationship among the prior, 
the likelihood, the preposterior, and the posterior is no longer shown explicitly 
as in Eq. 2.11, but is implicit in Eqs. 2.14 and 2.15. Using EnKF in the context 
of HM requires the initial guess of the model parameters (i.e., the prior 
ensemble) together with a model that can predict both the production and 
observations given a production strategy, observations, and their associated 
statistics; and the result is the EnKF updated model parameters (i.e., the 
posterior ensemble).  

To perform Bayesian inference using EnKF requires only a few matrix 
operations. Thus, it is very useful for updating a reservoir simulation model 
which usually has thousands of parameters for determination. EnKF is applied 
in Paper V. 

2.1.2.4.2 Example of EnKF Application 

Here is an example to illustrate the application of EnKF. A 2D, horizontal, two-
phase (water and black oil) reservoir simulation model is built to represent the 
“truth.” A horizontal injector penetrates along the left edge of the reservoir, and 
a horizontal producer along the right edge. For simplicity, the horizontal 
injector and the horizontal producer are represented by 10 vertical dummy 
injectors and 10 vertical dummy producers, respectively. The fluid injection 
rate is fixed at 15 sm3/day in each dummy injector. The production rate in each 
dummy producer is constrained by an upper bound of 15 sm3/day. Two highly 
permeable regions, with horizontal permeability of 1500 millidarcy (md), are 
used to mimic the water channels; and the horizontal permeability in the 
background is 250 md. The geometry of the model, the horizontal permeability 
field, and the dummy vertical wells are shown in Figure 2.2. The grid blocks 
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are cubic with length, width, and height equal to 10 m. The reservoir model is 
450 m × 450 m × 10 m which scales to 45 blocks × 45 blocks × 1 block. 

 
Figure 2.2—Reservoir simulation model representing the “truth.” 

The unknown is the horizontal permeability (PermH) at each grid block, which 
means 2025 parameters for the entire grid. The base 10 logarithms of the 
permeabilities are used as the model parameters in EnKF because grid block 
permeability is usually assumed to be lognormally distributed and the use of 
logarithm can prevent the updated permeability calculated by EnKF from being 
negative. The state variables are the grid block pressures and the grid block 
water saturations. The true observations are the well bottom hole pressures 
(WBHPs) and oil production rates in all the dummy wells, obtained by running 
simulation on the true model. The predicted observations (WBHPs and well oil 
production rates) are obtained by running simulations with the updated model 
and state variables. Observations are recorded every 50 simulated days over a 
1000-day production period, totaling 20 data points. EnKF is implemented in 
MATLABTM (2014), and the production model is an ECLIPSETM (2014) 
simulation model, so an interface between MATLAB and ECLIPSE is 
constructed: the updated permeabilities calculated in MATLAB are written into 
the input files (the .DATA-files) of ECLIPSE, the forecasted and updated 
pressures and saturations are read from and written into the restart files (the X-
files) of ECLIPSE, respectively, the predicted observations are read from the 
summary files (the S-files) of ECLIPSE, and the ECLIPSE simulator can be 
called to run in MATLAB. The standard EnKF algorithm (Eqs. 2.14 and 2.15) 
is used to calculate the updated model variables (PermH) and state variables 
(pressures and saturations). 

Initial ensemble members of the PermH field are generated by sampling from 
a predefined multivariate normal distribution that describes our a priori 
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knowledge about the PermH field. One of the initial ensemble members is 
shown in Figure 2.3. 

 
Figure 2.3—The initial PermH field (in md) of an ensemble member. 

To avoid physically impossible PermH values, we truncate the permeability 
values so that they are limited to a range (from 100 to 2500 md in this example). 
We do the same for the updated saturations and pressures, such that the 
saturations are always between 0 and 1 and the pressures are always positive. 

Observations are perturbed by adding an error term drawn from a predefined 
normal distribution that describes our a priori knowledge about the 
measurement errors. In this example, we assign relatively small errors (a SD of 
1 bar for all the pressure measurements and a SD of 1 sm3/day for all the oil 
rate measurements). In a more realistic case, the measurement errors can be 
much larger. 

The mean over the updated ensemble of the PermH field is illustrated in Figure 
2.4. Two high permeable channels similar to those illustrated in Figure 2.2 
appear after applying the EnKF. The simulated results, WBHP for Producer 5 
and Injector 5, field water cut (FWCT), and field oil production rate (FOPR), 
are shown in Figure 2.5. The grey lines represent the results generated using 
the initial ensemble. The cyan lines represent the results generated using the 
updated ensemble members. The black dashed line represents the result 
generated using the mean over the updated ensemble as shown in Figure 2.4. 
The red line represents the result generated using the true model. The measured 
WBHP from Producer 5, Injector 5, and measured FOPR are the red circles in 
Figure 2.5(a), (b), and (d), respectively. The results show that the use of EnKF 
not only reduces the spread of the initial ensemble (i.e., reduces the uncertainty) 
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but produces a good match to the measured data. A significant impact of using 
EnKF can be seen in Figure 2.5(c): none of the initial ensemble members 
predicts the water breakthrough time correctly, whereas the updated ensemble 
provides a nearly perfect match. 

 
Figure 2.4—The mean over the updated ensemble of the PermH field. 

  
(a) Producer 5: WBHP [bars] vs. Time [days] (b) Injector 5: WBHP [bars] vs. Time [days] 

 

  
(c) FWCT [-] vs. Time [days] (d) FOPR [sm3/day] vs. Time [days] 

Figure 2.5—Simulation results of the initial ensemble and the updated ensemble. 
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The updated results (the cyan lines) do not capture the truth (the red line). This 
does not mean that based on the updated results, the probability of the truth is 
zero. Recall that the EnKF uses MC samples to represent a probability 
distribution. The values on the cyan lines at a certain time are MC samples 
representing a Gaussian distribution. This underlying Gaussian distribution 
captures the truth. 

2.2 Integrating Model Uncertainty in Probabilistic 
History Matching 

The probabilistic HM approaches presented earlier incorporate measurement 
errors and non-uniqueness of inverse modeling and produce multiple 
realizations of model parameters to reflect these uncertainties. However, all of 
them assume a mathematical model that can “correctly” predict reservoir 
performance. The uncertainty is only in the model parameters and not in the 
model. This, of course, is never the case because “all models are wrong but 
some are useful” (Box 1979). 

In this section, the context is the use of decline curve analysis for 
unconventional plays. Although numerical techniques for forecasting 
hydrocarbon production have developed rapidly over the past decades, the 
decline curve analysis technique is still used extensively in the O&G industry. 
A decline curve model is computationally attractive, and only production data 
that can be easily acquired is required for determining the model parameter 
values through the HM process. The history matched model is further used for 
forecasting hydrocarbon production and reserves. 

One of the most extensively used decline curve models is the Arps (1945) 
model. However, the Arps model is often not ideal for unconventional plays 
(Joshi and Lee 2013). Several decline curve models have been developed in 
order to capture the flow behaviors in an unconventional well; for example, the 
power law exponential model (Ilk et al. 2008), the stretched exponential model 
(SEM) (Valko and Lee 2010), the Duong (2011) model, the logistic growth 
model (Clark et al. 2011), and the Pan (2016) CRM. 

Given these models, a question arises that has not been discussed widely: which 
is the best model? This question seems trite because the meaning of “best” is 
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not well defined. In traditional practices, the model that can best fit the data in 
a least squares sense is regarded as the best model. However, this ignores two 
facts: the best fit model might not be the model that best describes the flow 
behaviors, and there might be several models that fit the data almost equally 
well. 

2.2.1 Calculating Model Probabilities Using Bayes’ 
Theorem 

Instead of identifying the “best” decline curve model for unconventional plays, 
we propose to regard any model as potentially good, where goodness is 
characterized by a probability. If a model has higher probability than the others, 
we say that this model is more likely to be a good model. If several models have 
close probabilities, we say that the model uncertainty is high because it is 
difficult to tell which model is more likely to be a good model. 

In this manner, the model uncertainty can be easily integrated in probabilistic 
decline curve analysis, using the probabilistic HM approaches presented in 
Section 2.1.2. However, the P-MLE approach (Section 2.1.2.3) will be used 
here for the following reasons: 

 Data points should be weighted differently according to their noisiness, 
and distributions of measurement errors need to be assigned for 
calculating the model probabilities; thus, the Bootstrap method is not 
used. 

 The parameters of different models have different physical meanings 
and are related to the reservoir property. It is not easy to assign 
distributions to the parameters of different models to represent the same 
reservoir property based on our a priori knowledge. To compare 
different models fairly, it would be better to assume an uninformative 
prior. Therefore, a fully Bayesian approach like the EnKF, which 
requires an informative prior, is not used. 

Consider a given dataset  where  is the oil 
production rate measured at time . The procedure to quantify the model 
uncertainty is 
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1) Estimate , which is the SD of the normal random error of the 
measurement of , using the moving window approach. 

2) Draw an MC sample from a normal distribution with mean  and SD 
, and repeat it for each data point to obtain a sampled dataset. 

3) For a given sample dataset, use MLE to determine the parameters of 
each model under consideration. 

4) Calculate the probability of each model with its MLE parameters, given 
the sampled dataset. 

5) Repeat Steps 2–4  times, where  is the total number of MC 
iterations (we use ). 

6) Calculate the posterior probability of each model. 

In Step 4, the probability of each model with its MLE parameters, given the 
sampled dataset, is calculated using Bayes’ theorem: 

  (2.16) 

where  denotes the MLE parameters of model  given sampled dataset 
;  denotes a priori knowledge; and  denotes a posteriori knowledge given 
. Applying a noninformative prior, we have 

, reducing Eq. 2.16 to 

  (2.17) 

Inserting Eqs. 2.4 and 2.5 (MLE loss function) into Eq. 2.17, we obtain 

 

 

(2.18) 

Because  is a MC sample,  and 
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(2.19) 

The probability calculated using Eq. 2.19 is the probability of the estimate of 
interest (e.g., reserves) forecasted by model  with its parameters . By 
repeating this process over different models and different sampled datasets, we 
obtain the distribution of interest, which includes uncertainties in measurements, 
inverse modelling and models. The posterior probability of a model in Step 6 
is calculated as 

  (2.20) 

2.2.2 Example of Application—Probabilistic Decline 
Curve Analysis with Multiple Models  

We use an example to illustrate the impacts of using a deterministic approach 
or probabilistic approach without considering the model uncertainty on decline 
curve analysis, and to highlight the importance of integrating the model 
uncertainty. This example considers only three models—the Arps model, SEM, 
and Pan CRM—but other models can be easily added. 

The “true” decline is generated using the Pan CRM. Random errors are added 
to the “true” decline to form the synthetic dataset. Figure 2.6 illustrates the 
synthetic dataset and the “true” decline of oil production rate as well as the SDs 
of measurement errors assessed using the moving window approach with an 
HWS of 10 data points. Our interest is the cumulative oil production from day 
200 to day 10950 (year 30). The “true” cumulative oil production given by the 
Pan CRM is 48.1 Mbbl. This value is used as a reference for the estimates. 

We first use a deterministic approach to estimate the cumulative oil production. 
The resulting loss function value of MLE for each model is listed in Table 2.1. 
Because the Arps model best fits the data (minimum loss function value), it is 
used for forecasting, providing an estimated cumulative oil production of 132.6 
Mbbl. This estimate is more than 2.5 times the “true” value. 
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Figure 2.6—Synthetic dataset to day 200. 

Arps Model SEM Pan CRM 
171.65 171.75 172.29 

Table 2.1—Loss function value of MLE for the Arps model, SEM, and Pan CRM for 
deterministic HM. 

To produce a distribution of the cumulative oil production, we use the P-MLE 
approach with only the Arps model. The P10, P50, mean, and P90 values are 
listed in Table 2.2. The forecast of the Arps model is biased far from the “truth” 
(48.1 Mbbl), and the 80% confidence interval (CI), from P10 to P90, does not 
cover the “truth.” 

Statistic P10 P50 Mean P90 
Cumulative Oil 

Production [Mbbl] 73.5 132.3 135.7 207.2 

Table 2.2—Statistics for cumulative oil production forecasted by the Arps model. 

We now integrate the model uncertainty in the P-MLE approach for this 
analysis. Table 2.1 shows that the minimized loss function values of the three 
models are indeed very close. Using Eq. 2.18 to convert these loss function 
values to probabilities, the posterior probabilities of Arps model, SEM and Pan 
CRM are 36.4%, 34.0%, and 29.6%, respectively. This suggests that the models 
are almost equally likely to be good, given the dataset. This result seems 
counter-intuitive as the correct model (the Pan CRM) is the least likely one. 
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This is because the dataset does not provide enough information to identify the 
correct model. Thus, the model uncertainty remains large even when the dataset 
is given. Figure 2.7 shows the boxplots of cumulative oil production forecasted 
using solely the Arps model, SEM, or Pan CRM, and using our proposed 
approach. Among the three models, the Arps model has the largest uncertainty 
in inverse modelling, as it gives the largest 80% CI, whereas the Pan CRM has 
the smallest uncertainty in inverse modelling. Since the Pan CRM is the correct 
model, its estimate is the best. Using our proposed approach, the “truth” is 
covered in the 80% CI. This means that by integrating the model uncertainty in 
the analysis, we can reduce the risk of selecting a poor model for forecasting. 

 
Figure 2.7—Boxplots of cumulative oil production forecasted using solely one model and 

using the proposed approach given the synthetic data to day 200. 

The application of the proposed approaches for probabilistic decline curve 
analysis for unconventional wells in two fields is illustrated and discussed in 
Paper I. 
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3 Managing Geological Uncertainty in 
Production Optimization 

PO is a powerful approach to design a production strategy. The goal of PO is 
to maximize hydrocarbon production by adjusting the control (or decision) 
variables (e.g., water injection rates and producer WBHPs). However, this can 
be expressed in different ways, such as to minimize the water cut of a producer, 
to optimize the WBHP of an injector, or to maximize the economic value over 
the life of a reservoir. This work defines the objective of PO as, to maximize 
NPV. The context in this work is waterflooding, and we assume that all 
revenues stem from oil production and that all costs are induced by water 
injection and water production. Thus, the objective function for a deterministic 
case, where a single realization is considered, is defined as 

 
 

(3.1) 

where  is the control vector (i.e., a vector of control variables) defined as 
, where  is the number of control variables;  is the field oil 

production rate at time ;  is the field water production rate at time ;  is 
the field water injection rate at time ;  is the oil price;  is the water 
production cost; and  is the water injection cost;  is the discount factor;  
is the cumulative time for discounting; and  is the reference time for 
discounting (  = 365 days if  is expressed as a fraction per year and the cash 
flow is discounted daily). , , and  are forecasted by a given production 
model. 

3.1 Robust Production Optimization 
RO of production is performed over an ensemble of realizations representing 
the geological uncertainty. For a risk-neutral decision maker, the objective of 
RO is to maximize the expected value (EV) over the ensemble, 
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  (3.2) 

where  is the EV over all realizations (i.e., the objective function for a 
probabilistic case),  is the objective function (Eq. 3.1) for a deterministic case 
with a single realization , and  is the number of realizations (i.e., ensemble 
size). 

Maximizing Eq. 3.2 can be done iteratively using the steepest ascent method. 
For each iteration, the control vector is updated as 

  (3.3) 

where the subscript  denotes the iteration number,  is the currently 
updated control vector,  is the previously updated control vector,  is the step 
length for updating, and  is the gradient for updating the control variables. 
Several methods have been proposed to estimate  for each iteration. Nævdal 
et al. (2006) used an adjoint method to calculate . However, deriving the 
adjoint equation requires access to the mathematical formulation of a 
production model, which is impossible for commercial reservoir simulators, 
such as ECLIPSE that is used in this work. Chen et al. (2009) proposed the 
ensemble-based optimization method (EnOpt), to calculate . The EnOpt treats 
a production model as a black box (i.e., no requirement for its mathematical 
formulation) and thus can be easily implemented with any type of production 
model. Besides, EnOpt is specially designed for the case where an ensemble of 
realizations is involved, so it can significantly reduce the number of simulations 
required for gradient calculation. Thus, we use EnOpt for this work, as 
discussed in Papers II and V. 

In the original EnOpt proposed by Chen et al. (2009), the ensemble of values 
for control vector , , …, , where  is the ensemble size,9 is generated 
from a multivariate normal distribution with predefined mean  and predefined 
covariance matrix , which is used to specify the temporal correlation of the 

                                                      
9  if each realization is coupled with one sample of values for the control vector 
(i.e., a 1:1 ratio is applied), as in this work. 
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controls to limit the frequency of changes to the controls. The predefined mean 
 can be approximated by its sample mean , i.e., 

  (3.4) 

and the average objective value  can be approximated by 

  (3.5) 

Chen et al. (2009) used the approximation in Eq. 3.4 to calculate the mean-
shifted ensemble matrix  and the approximation in Eq. 3.5 to calculate the 
mean-shifted objective function vector . However, Do and Reynolds (2013) 
did not find any advantage, theoretical or practical, in approximating these two 
terms. Hence, they calculate the mean-shifted ensemble matrix directly using 
the predefined mean  by 

  (3.6) 

Moreover, Fonseca et al. (2014) suggested calculating the mean-shifted 
objective function vector  with respect to the objective value of the predefined 
mean for each individual realization instead of the average objective value (Eq. 
3.5), i.e., 

  (3.7) 

The cross-covariance matrix is then 

  (3.8) 

Chen et al. (2009) approximated the gradient by 

  (3.9) 

Eqs. 3.6–3.9 and 3.3 constitute the modified EnOpt formulation. The original 
EnOpt formulation can be obtained by replacing  with  in Eq. 3.6 and  
with the approximated  in Eq. 3.7. Fonseca et al. (2014) showed that the 
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modified EnOpt converges to a higher objective value and more quickly than 
does the original EnOpt. Therefore, we use the modified EnOpt. 

The step length  significantly affects the rate of convergence. A naive line 
search procedure is to simply reduce  by half if . The present 
work uses an interpolation-based line search procedure to find a relatively large 
value of  that satisfies the Armijo condition (Wright and Nocedal 1999). The 
line search procedure halts when  or a maximum number of 
iterations is reached, whichever comes first. 

The stopping criterion of the iteration of the steepest ascent method is usually 
that the increase in the objective function value is smaller than a user-defined 
threshold value or a maximum number of iterations is reached, whichever 
comes first. In our use of EnOpt, an optimal solution is usually found during 
the first 5–15 iterations. In order to observe clear evidence of convergence, our 
stopping criterion is that the number of iterations has reached 30, which is about 
twice as many as have been required based on our experience. 

We use a synthetic 2D reservoir model (the 2D model) to illustrate the 
application of the EnOpt. The 2D Model is an isotropic heterogeneous model 
with four injectors and one producer in a five-spot pattern. The heterogeneity 
pertains to permeability only. Figure 3.1 shows the geometry of the 2D model 
and well locations. The color map in Figure 3.1 shows a realization of the 
permeability field in md. The producer bottom hole pressures (BHPs) are fixed 
at 200 bars. The well injection rate is controllable and constrained from 0 to 
200 m3/day. The control variables are injection rates for 50 time intervals of 30 
days each (i.e., a life-cycle of 1500 days). For simplicity, the injection rates of 
all injectors for a given day are assumed to be identical. Thus, there are 50 
control variables. To incorporate permeability uncertainty, we generate 100 
realizations of the permeability field from a multivariate normal distribution. 
Three of these realizations are shown in Figure 3.2. NPV calculation uses the 
oil price 315 $/m3, water production cost 47.5 $/m3, water injection cost 12.5 
$/m3, and discount rate 8%. 

For robust production optimization, we use the modified EnOpt to maximize 
the expected NPV (ENPV) over all the realizations under a single injection 
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scheme. The starting point (the base case) uses an injection rate of 100 m3/day 
for all the producers and time steps. 

 
Figure 3.1—Illustration of the 2D model and well locations. 

 

 
Figure 3.2—Three realizations of the permeability field for the 2D model. 

 
Figure 3.3—Iterative ENPV and cumulative simulation runs. 

The ENPV and cumulative simulation runs of each EnOpt iteration are shown 
in Figure 3.3. The ENPV increases sharply at the beginning and starts to 
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converge after 7 iterations. The ENPV decreases at some iterations because the 
maximum number of line search iterations (set to 7 in this example) was 
reached. The optimal ENPV is $32.03 million, corresponding to an 
improvement of 35.59% over the base case ENPV of $23.62 million. The total 
number of simulation runs is 15700 for 30 iterations. 

Figure 3.4 illustrates the optimal injection scheme. Its major trend is that the 
injection rate decreases. Because of the discounting nature of NPV calculation, 
the more oil produced at the early times, the better. At late times, the water cut 
is high, so water injection rate is reduced to a sufficient rate for continuing 
production. 

 
Figure 3.4—Optimal injection scheme for the EnOpt example. 

 
Figure 3.5—CDF of NPV under the optimal injection scheme for the EnOpt example. 
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The cumulative density function (CDF) of NPVs corresponding to the optimal 
injection scheme on the 2D model with the 100 realizations is illustrated in 
Figure 3.5. The 80% CI, from P10 to P90, is from $30.07 million to $33.61 
million. The SD is $1.29 million, an order of magnitude smaller than the EV. 
The distribution is quite symmetric. 

3.2 Speeding up RO of Waterflooded Production 
Using CRM 

Although EnOpt has significantly reduced the number of simulation runs 
required, RO can still be computationally intensive when based on grid-based 
reservoir models using hundreds of realizations. This section presents an RO 
workflow that embeds proxy models for further reduction of the computational 
cost for RO. 

3.2.1 Proxy Models vs. Rich Models 
Whether using rich10 models or proxy models, one should keep in mind the 
counsel of Box (1979), “All models are wrong but some are useful.” 

Engineering uses models to support decision making. Good decision models 
are both useful and tractable. By “useful,” we mean that the model must be 
relevant and generate insight to resolve the decisions at hand. Usefulness also 
requires the model to be credible and transparent—will the DMs believe the 
result of the analysis and can the approach be clearly explained and understood? 
By “tractable,” we mean that the required analysis can be done within the time 
and resources available. 

Both grid-based models and proxy models can be useful. However, a reservoir 
simulator such as ECLIPSE, with its voluminous code, is so feature rich and 
detail oriented that it is not transparent to most users. Furthermore, a rich and 
computationally intensive grid-based model is often not tractable—particularly 
when the underlying problem is uncertain. 

                                                      
10 We use “rich” interchangeably with “complex” and “verisimilar” to indicate a high 
level of detail built into a model. 



Managing Geological Uncertainty in Production Optimization 

31 

Decision-making contexts require cogent (compelling) models. Companies 
tend to build too much detail into their decision-making models from the start 
and focus too much energy on specific cases or inputs that do not influence the 
decisions at hand. As stated by Bickel and Bratvold (2008), “This level of 
modeling detail is really a shirking of responsibility on the part of the decision 
analyst who will and can build a model that includes only the most salient 
factors. Building in detail is easy. Building in incisiveness is hard work.” 

3.2.2 Proxy-model Workflow for RO 
When geological uncertainty is considered and is represented by hundreds of 
realizations, the EnOpt usually requires thousands of production prediction 
runs. In the traditional workflow, production is predicted by running grid-based 
reservoir simulation. The computational intensiveness of a grid-based reservoir 
model can be reduced by having a useful and tractable proxy model serve as a 
precursor. Figure 3.6 depicts the traditional and proxy-model workflows for 
RO. 

 
Figure 3.6—Traditional and proxy-model workflows for RO. 

The proxy-model workflow starts with identifying reservoir characteristics and 
drainage scheme for selecting potential proxy models. The potential proxy 
models are screened by testing their qualities of matching and prediction. 
“Pseudo production data”11 are generated by reservoir simulation that includes 

                                                      
11 We use the term “pseudo production data” because the data are simulated rather than 
measured. 
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a random injection scheme. An HM process is used to tune the parameters of a 
proxy model to where the production predicted by the proxy model fits the 
pseudo production data. The production predicted by the history-matched proxy 
model is then compared to that of the grid-based reservoir model, using another 
random injection scheme for validation. If the difference is unacceptably large 
either at the HM step or at the validation step, we test another potential proxy 
model. If the difference is small at both steps, we use the proxy model for PO. 
After using the optimization algorithm with the proxy model, we run simulation 
again on the grid-based reservoir model with the optimal control vector of the 
proxy model to get the final results (e.g., NPV). This last step is for evaluating 
the optimal control vectors of the reservoir simulation and proxy models on the 
same basis. This will be discussed later. 

3.2.3 Value of Verisimilitude 
Similar to the statement that “one cannot value information outside of a 
particular decision context” (Bratvold et al. 2009), the value of using a more 
verisimilar or richer model cannot be assessed outside of a particular decision 
context. Using a more verisimilar model has no value in and of itself. It can add 
value only if it holds the possibility of changing our decisions. We introduce 
the value of verisimilitude (VOV) to quantify the economic impact of any 
difference in optimal solutions obtained by the proxy-model and traditional 
workflows. 

VOV is the benefit that the verisimilitude can offer, and calculated as 

  (3.10) 

where  is the true value of the decision given a control vector ,  is 
the control vector found by using the traditional workflow, and  is that 
found by the proxy-model workflow. However, being that a given field can 
support only one production strategy and cannot yield the true value until the 
end of production, the rich model is assumed to represent the truth. For the case 
with multiple realizations, Eq. 3.10 is used to calculate the VOV for each 
realization. This results in a distribution of VOV. 
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If VOV is zero, using a more verisimilar model does not create any value. The 
VOV can be compared with the costs saved (converted to monetary terms) by 
using a proxy model.  The costs include the computational cost itself and the 
costs induced by longer waiting time and later decisions 12  when a more 
verisimilar model is used. If the costs saved exceeds VOV, then the proxy 
model is preferable. 

Bratvold and Begg (2009) noted, “Companies tend to build too much detail into 
their decision-making models from the start.” This pitfall might be avoided by 
calculating the VOV. Unfortunately, calculating the VOV is, in itself, 
computationally expensive, as it can be assessed only by running both the rich 
and the proxy models. Ideally, the VOV should be obtained without running 
the rich model. One possible solution is to build a database of VOV 
assessments, which can eventually be used to estimate the value of using a 
richer model for similar cases. Another possibility is to formulate the VOV as 
a sensitivity analysis problem, with the purpose of assessing what the value 
with a rich model, , must be in order for the VOV to be greater than 
the costs. This minimum  can then be evaluated by the subject matter 
experts, for determining whether it is realistic for a given decision context. 

3.2.4 CRM for Waterflooding 
The choice and usefulness of a proxy model is a function of the reservoir 
characteristics, drainage scheme, and decision context. For RO of waterflooded 
production, a CRM is a potential candidate. 

A CRM is based on material balance and derived from the total fluid continuity 
equation. It contains considerably fewer parameters and needs significantly less 
computation time than does a grid-based reservoir model. Required input data 
for a CRM are production rates, injection rates, and producers’ BHPs. The two 
main parameters of a CRM are connectivity and time constant. For an oil-water 
system, connectivity is the proportion of injected water in an injector that 

                                                      
12 An example of the costs induced by longer waiting time and later decisions is: 
Suppose we need to decide the location of a new well. The waiting time of using a rich 
model is 7 days and that of a proxy is only 1 day. Then, there will be costs associated 
with having the drilling team wait for 6 days (the difference between the waiting times 
of using the rich model and the proxy model) and delaying the production for 6 days. 
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contributes to the total fluid production in a producer. The time constant 
indicates how long a pressure wave from an injector takes to reach a producer. 

Based on control volume, CRM can be divided into three categories: single-
tank CRM (CRMT), producer-based CRM (CRMP), and injector-producer-
pair-based CRM (CRMIP) (Sayarpour et al. 2009). As illustrated in Figure 3.7, 
the control volume in a CRMT is the entire drainage volume of a reservoir 
covering a single pseudo-producer (encompassing all physical producers) and 
a single pseudo-injector (encompassing all physical injectors), enabling the 
entire reservoir to be treated as a single tank with one inlet and one outlet. A 
CRMP has producer-based control volumes, each of which covers all the 
injectors influencing its corresponding producer. A CRMIP has one control 
volume for each injector-producer pair. 

 
Figure 3.7—Schematic of (a) CRMT, (b) CRMP, and (c) CRMIP. 

This work focuses on CRMP. The fundamental equation of CRMP is the total 
fluid production equation. For constant producer BHPs, the equation is 
(Sayarpour 2008) 

  (3.11) 

where sub/superscripts , , and  are the indices of injector, producer, and time 
step, respectively;  is the total fluid production rate of producer  at time ; 

 is the time step length between times  and ;  is the time constant 
for producer ;  is the number of injectors;  is the connectivity between 
injector  and producer ; and  is the water injection rate of injector  during 
the period . Both  and  are assumed to be constant with respect to time. 
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Because Eq. 3.11 can predict only total fluid production, combining it with a 
fractional flow model is necessary in order to separate oil production from total 
production. Sayarpour et al. (2011) combined  CRMP with a Buckley-Leverett-
based fractional flow model, Gentil (2005) with an empirical fractional flow 
equation, and Cao et al. (2015) with the Koval (1963) model. Cao (2014) 
demonstrated that the Koval model might not yield a good match for mature 
waterfloods because it might approach an abrupt end of 100% water cut. She 
also noted that the Gentil model might not work well for immature waterfloods 
because the relationship between the natural logs of water-oil ratio and 
cumulative water injection might be non-linear at that stage. These concerns 
prompted the development of a fully coupled two-phase-flow-based CRMP 
(Coupled CRMP), which is applicable in all stages of maturity (Cao 2014, Cao 
et al. 2015).  

The parameters of CRM and fractional flow model are determined by history-
matching the production data. 

A detailed review of CRMP combined with the Koval model and Coupled 
CRMP is provided in Paper II. 

3.2.5 Example of Applying the Proxy-model Workflow 
To illustrate the application of the proxy-model workflow with Coupled CRMP 
and the concept of VOV, we use the 2D model with 100 realizations that was 
presented in Section 3.1. Paper II applies this approach to a more realistic case 
with a synthetic 3D reservoir simulation model. 

It yields 100 sets of the parameters of Coupled CRMP (i.e., an ensemble of 
Coupled CRMP) to repeat the procedure of matching Coupled CRMP to the 
pseudo production data simulated by every realization of the 2D model. The 
qualities of matching and prediction are shown in Figure 3.8 and Figure 3.9, 
respectively. The matching quality is good: the minimal R2 (the worst 
matching) for total production rate and water cut are 0.9950 and 0.9929, 
respectively. The prediction quality is less good, but still satisfactory, with a 
minimal R2 of 0.9946 for total production rate and 0.9546 for water cut. 
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Figure 3.8—Matching of total fluid production rate and water cut: (a) total fluid 

production rate from the 2D model, (b) water cut from the 2D model, (c) total fluid 
production rate from Coupled CRMP, and (d) water cut from Coupled CRMP. 

 

 
Figure 3.9—Validation of total fluid production rate and water cut: (a) total fluid 

production rate from the 2D model, (b) water cut from the 2D model, (c) total fluid 
production rate from Coupled CRMP, and (d) water cut from Coupled CRMP. 
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For robust production optimization, we use the modified EnOpt to maximize 
the expected NPV over all the realizations, under a single injection scheme. The 
optimal ENPV of the 2D model is $32.03 million and of Coupled CRMP is 
$31.12 million. The expected NPV of the proxy-model workflow is $31.84 
million, which is close to that of the traditional workflow. Figure 3.10 
illustrates the CDFs of NPV corresponding to the optimal solutions of the 2D 
model and of Coupled CRMP, and to the 2D model under the optimal injection 
scheme of Coupled CRMP. The optimal injection schemes are shown in Figure 
3.11. 

The proxy-model and traditional workflows lead to similar optimal expected 
NPVs and similar NPV distributions (the solid red curve vs. the solid blue curve 
in Figure 3.10), although they provide different optimal injection schemes. This 
indicates that these two injection schemes are almost equally good if NPV is 
the only criterion. To determine the better injection scheme, we could add 
relevant criteria; for example, we might want to minimize the frequency of 
significant changes in the injection rates and thus the optimal injection scheme 
of Coupled CRMP is better than that of the 2D model. 

Coupled CRMP underestimates NPV (the dashed red curve vs. the solid red 
curve in Figure 3.10). We aim to investigate the difference in NPVs due to the 
difference in decisions made based on the rich and proxy models. The 
difference in NPVs should not include that due to the calculation of NPVs based 
on different models. Therefore, we should evaluate the optimal control vectors 
of the rich and proxy models on the same basis (i.e., the rich model). This is 
why the proxy-model workflow runs the simulation again on the grid-based 
reservoir model with the optimal control vector of the proxy model to get the 
final NPV. 

The total number of production prediction runs during EnOpt was 21800 for 
Coupled CRMP and 15600 for the 2D model. The run times of Coupled CRMP 
and the 2D model for a prediction of 3000 days were 0.17 and 4.1 seconds, 
respectively, and the computational time of one HM was 1.1 seconds. The 
1500-day run time of a life-cycle prediction is one half of the run time of a 
3000-day prediction. The total computational time of the traditional workflow 
is 31980 seconds, and of the proxy-model workflow is 2578 seconds. The 
computation time required by the proxy-model workflow is therefore less than 
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1/10 that of the traditional workflow. The distinction will become more 
pronounced if the grid-based reservoir model has a finer grid block size or 
higher geological complexity. Longer computational time or waiting time 
caused by using a richer model can potentially come with significant cost of 
decision delays (see the discussion related to Footnote 12). 

 
Figure 3.10—CDFs of NPV for the proxy-model workflow example. 

 

 
Figure 3.11—Optimal injection schemes for the proxy-model workflow example. 

To calculate the VOV, we consider the following decision-making context that 
involves three decisions in series. The first decision has two options: to 
continue developing the field at a cost of $10 million or to walk away. The 
second decision is whether to install valves on the injectors at a cost of $2 
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million, given that water would be injected over the entire production life-cycle 
at a constant rate of 100 m3/day without valves or at any rate from 0 to 200 
m3/day with valves. The third decision is to choose a water injection scheme if 
valves are installed. All the decisions will be based on our current knowledge 
about the field. We assume a risk-neutral case, where the objective is to 
optimize the EV. 

The decision trees are illustrated in Figure 3.12 and Figure 3.13, where a 
square, a circle, and a triangle represent a decision node, an uncertainty node, 
and a payoff node, respectively. (Bratvold and Begg (2010) includes a detailed 
description of using decision trees to solve hydrocarbon-production-related 
decision-making problems.) The P10, P50, and P90 values are shown in the 
decision trees. The distributions of the NPV are expected to differ because the 
proxy-model and traditional workflows lead to different optimal injection 
schemes. Given our objective of maximizing the ENPV of a particular decision-
making problem, the solution of the proxy-model workflow gives an ENPV 
very close to that of the traditional workflow. 

The optimal choice is the same for the first and second decision nodes. 
However, the two workflows make the third decision diverge, resulting in an 
expected revenue of $19.84 million for the proxy-model workflow (applying 
the blue line in Figure 3.11) and of $20.03 million for the traditional workflow 
(applying the red line in Figure 3.11). The expected VOV (EVOV) is $20.03 
million - $19.84 million = $0.19 million. Using a more verisimilar production 
prediction model has no value in and of itself, as it must be material to 
potentially change our decisions. Thus, the 2D model (a richer model) adds no 
value to the first and second decisions in this case. It adds value only to the 
third decision. The EVOV is positive because the 2D model can capture more 
minor flow behaviors than can Coupled CRMP, giving a more accurate 
production prediction under our assumption that the 2D model represents the 
truth. However, the EVOV ($0.19 million) is more than an order of magnitude 
less than the ENPV improvement ($19.84 million − $13.62 million = $6.22 
million) by installing the valves and conducting the optimal injection scheme 
found by performing EnOpt on Coupled CRMP. This is because Coupled 
CRMP is already a good approximation to the 2D model. The CDF of the VOV 
is illustrated in Figure 3.14 which shows that the chance of a negative VOV is 
about 5.4%. The minimal VOV is −$0.096 million, and the maximal is $0.783 
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million. This indicates that using a richer model for RO cannot guarantee a 
better control than using a proxy model for each individual realization. 

 
Figure 3.12—Decision tree with the optimal solution of the proxy-model workflow. 

 
Figure 3.13—Decision tree with the optimal solution of the traditional workflow. 

We investigate the sensitivity of the EVOV to the valve cost by varying the 
latter. The results are plotted in Figure 3.15, which can be divided into three 
regions: valve cost lower than $8.21 million (Region 1), from $8.21 million to 
$8.41 million (Region 2), and greater than $8.41 million (Region 3). In Region 
1, the EVOV is a constant $0.194 million because only the third decision is 
affected by whether the proxy-model or traditional workflow is chosen. In 
Region 2, installing valves is called for by the traditional workflow but not by 
the proxy-model workflow. The linear decrease in the EVOV in Region 2 is 
because the value with valves installed is a linear function of the valve cost and 
the value with valves not installed is a constant. In Region 3, the EVOV drops 
to 0 because neither the proxy-model nor the traditional workflow calls for 



Managing Geological Uncertainty in Production Optimization 

41 

installing valves. This illustrates that the value of using a richer model is 
decision-dependent. 

 
Figure 3.14—CDF of the VOV for the example of applying the proxy-model workflow. 

 

 
Figure 3.15—Sensitivity of EVOV to valve cost. 
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4 Managing Geological Uncertainty in 
Reservoir Management 

Previous chapters have presented approaches to managing geological 
uncertainty in HM and PO. This chapter will present iterative approaches to 
managing geological uncertainty that combine HM and PO for making 
sequential RM decisions. This iteration is central to RM. 

4.1 Closed Loop Reservoir Management 
In CLRM (closed loop reservoir management—also known as “real time 
reservoir management,” “smart reservoir management,” or “closed loop 
optimization”), the loop of HM and PO is closed by continuously updating a 
production model with several realizations and performing life-cycle 
optimization whenever new data become available (Brouwer et al. 2004, 
Nævdal et al. 2006, Chen et al. 2009, Wang et al. 2009, Jansen et al. 2009). 
Figure 4.1 illustrates the process flow of CLRM. An initial ensemble of a 
production model with numerous realizations is built based on prior knowledge 
on the reservoir, and an initial production strategy for the whole life-cycle is 
determined by performing RO on the initial ensemble. The initial production 
strategy is applied to the real field until new data becomes available. The new 
data are used to update the production model, and a new production strategy for 
the remainder of the life-cycle is determined by performing RO on the updated 
ensemble of the production model. The new production strategy is applied to 
the real field until new data become available. Repeating the process keeps the 
RM up to date. 
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Figure 4.1—Process flow of CLRM, adopted from Jansen et al. (2009). 

CLRM provides a myopic or naive decision policy in that the uncertainties and 
decisions associated with currently available data are considered but the 
uncertainties and decisions associated with future data are not (Kullawan 2016, 
Thomas 2016). A decision-tree representation for this approach is illustrated in 
Figure 4.2, where  denotes decisions made at  and  denotes the 
uncertainties associated with current available data until .  is commonly 
represented by a production model with numerous realizations. The production 
strategy , , …,  is determined with the consideration of only the 
immediate relevant uncertainty . 

 
Figure 4.2—Decision-tree representation for CLRM. 

CLRM greatly simplifies the structure of a RM decision problem and 
consequently incurs less computational cost for solving the problem. However, 
its failure to reflect the full structure of an RM decision problem might lead to 
a suboptimal production strategy. 
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4.2 Fully Structured Reservoir Management 
The decision-tree representation of fully structured reservoir management 
(FSRM) is illustrated in Figure 4.3.13 The problem structure required for using 
FSRM is sequential decision making. If there is only one decision point (i.e., 
only  and  are included in the decision tree), then FSRM and CLRM will 
yield the same solutions. 

FSRM explicitly considers both the uncertainties associated with current 
available data ( ) and those with future data ( , …, ). Therefore, the 
current decision ( ) does not depend only on the uncertainties that a DM has 
learned so far, but on the uncertainties that the DM will learn in the future.14 
FSRM includes the DM’s learning ( , …, ) from the revelation of 
uncertainties associated with future data ( , …, ).  

Solving the decision tree in Figure 4.3 gives the optimal production strategy. 
However, it can be computationally intensive or even prohibitive because of 
the dependencies among the tree elements15 or the computational intensiveness 
of a production model. 

 
Figure 4.3—Decision-tree representation of FSRM. 

An example illustrates the differences between FSRM and CLRM solutions. 
Consider two geological realizations: Realization 1 (R1) has a high 
permeability channel between the injector and producer, and Realization 2 (R2) 

                                                      
13 We call this approach “fully structured” because we intend to (approximately) solve 
the fully structured decision tree (Figure 4.3), which reflects the real structure of a 
sequential decision-making problem, rather than the “simplified” decision tree (Figure 
4.2). 
14  The uncertain quantities under consideration won’t change over time, but the 
quantification of their uncertainties will change with new knowledge (learning) over 
time. 
15 For example, a value function depends on reservoir properties (uncertainties) and the 
chosen production strategy (decisions). 
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doesn’t. The prior probabilities of these two realizations are 0.5 and 0.5, 
respectively. The water cut behavior for these two realizations is shown in 
Figure 4.4. Because of the channel, R1 (red curve) will have earlier water 
breakthrough than R2 (blue curve) under the same production strategy. 
Consider a life-cycle of 120 months. The decision variables are the injection 
rates for 3 time intervals (Time Interval 1 (TI1): Month 1–Month 40, Time 
Interval 2 (TI2): Month 41–Month 80, and Time Interval 3 (TI3): Month 81–
Month 120). The injection rate is bounded at 0 to 150 m3/day. The decisions 
will be made at the end of Month 0, Month 40, and Month 80. Before making 
each decision, information from production data will be used to update our 
belief on the existence of the channel. Assuming that the reliability of the 
information is 0.9, we have the likelihood matrix listed in Table 4.1. The 
decision tree for this context is illustrated in Figure 4.5. 

 
Figure 4.4—Water cuts of R1 and R2. 

 

 Given the truth is 
R1 R2 

Information 
says 

“R1” 0.9 0.1 
“R2” 0.1 0.9 

Table 4.1—Likelihood matrix for the example comparing FSRM and CLRM solutions. 
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Figure 4.5—Decision tree for the example comparing FSRM and CLRM solutions. 

The FSRM and CLRM solutions are listed in Table 4.2. The FSRM solution 
leads to the optimal EV of $45.963 million, and the CLRM solution gives a 
lower EV of $45.927 million. 

Decision Node D1 D21 D22 D31 D32 D33 D34 
FSRM 150.0 56.4 150.0 0.0 150.0 82.6 136.3 
CLRM 150.0 76.9 150.0 0.0 150.0 82.6 136.3 

Table 4.2—Injection rates for decision nodes solved using FSRM and CLRM. 

The only difference between the two solutions is that FSRM assigns a lower 
injection rate to D21. Given that the first information indicates channel 
existence (“R11”), the probability of channel existence (R1) is 0.9 and that of 
no channel (R2) is 0.1; thus, CLRM assigns a moderate injection rate of 76.9 
m3/day to D21. Indeed, given that the first information indicates channel 
existence (“R11”), we can “foresee” that there is a high chance of 0.82 that the 
second information will indicate channel existence, resulting in a probability of 
channel existence (R1) of 0.99; thus, FSRM further reduces injection rate to 
56.4 m3/day for D21. This example illustrates that FSRM and CLRM can lead 
to different decisions and the CLRM solution can be suboptimal. 
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The difference between the FSRM and CLRM solutions ($45.963 million vs. 
$45.927 million) is very small for this example. The improvement of using 
FSRM instead of CLRM depends on the characteristics of a problem 
(uncertainties, decisions, and values). Paper III presents an example in the 
context of determining the optimal IOR start time. That example shows a 6.7% 
improvement in ENPV (from $2641.2 million to $2818.0 million) when FSRM 
is used instead of CLRM. 

4.3 Least-Squares Monte Carlo Algorithm for 
FSRM 

The LSM algorithm is an approximate dynamic programming algorithm, which 
approximates the conditional future value of an alternative by regression. Thus, 
it does not suffer from the “curse of dimensionality” induced by the 
uncertainties. However, its computational time increases linearly with the 
computational time of a production model and exponentially with the number 
of alternatives. It is promising for solving an FSRM problem with a 
computationally attractive production model and small number of alternatives. 

4.3.1 LSM Algorithm 
The LSM algorithm was proposed by Longstaff and Schwartz (2001) for 
American option problems that involve a yes-no decision: at any time, an option 
holder can decide whether to immediately exercise the option at the current 
stock price or to continue holding the option for exercising it at a future stock 
price. The stock price is an uncertain quantity in an American option problem, 
whose uncertainty can be modeled as a Markov process, and thus an 
alternative’s future value conditions only to the current stock price. 

However, geological uncertainty depends not only on the currently measured 
data but on the previously measured data, and consequently an alternative’s 
future value conditions to currently and previously measured data.  To address 
geological uncertainty, we slightly modify the LSM algorithm to include the 
dependency of the future value on the currently and previously measured data. 
The two central steps of our modified LSM algorithm are 

(1) Monte Carlo Simulation (MCS) Step: 
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 independent samples of model parameters representing geological 
uncertainty are generated using MCS. For one sample of model 
parameters, forward modeling is performed to provide modeled 
production data from  (time 0) to  (end time); and then, random 
noises generated based on the statistics of the measurement errors are 
added to the modeled production data to provide a sample of measured 
data. Because this sample of measured data consists of a series of data 
points in time, it is also called a path of measured data. Repeating this 
procedure for each of the  sampled sets of model parameters, we 
obtain  paths of measured data, i.e., . 

(2) Least Squares Step: 
For the th sample of model parameters, the NPV of alternative  is 
calculated, giving . This is repeated for the  sampled sets of 
model parameters, resulting in . 
To estimate the ENPV with alternative  conditioned on the measured 
data, , we regress  on 

. This procedure is repeated for each of the 
alternatives. 

The modified LSM algorithm is applied in Paper III. 

4.3.2 Example of Applying LSM 
An example illustrates the detailed steps of applying our modified LSM 
algorithm to solve an FSRM problem. 

A field has a life-cycle of 15 years. The decision-problem setting is relevant to 
the optimal IOR start time. We consider a yes-no decision at the end of Years 
0, 5, and 10: whether primary recovery should be shifted to secondary recovery. 
The production is modeled using a two-factor model (Parra-Sanchez 2010) that 
includes a factor for the recovery increment due to the change in recovery 
mechanism and another factor for the time constant of a recovery mechanism. 
For primary recovery, the model is formulated as 

  (4.1) 
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and for secondary recovery, 

  (4.2) 

where  is the primary oil recovery efficiency,   is the theoretical ultimate 
recovery efficiency for primary recovery,  is the primary recovery time 
constant for production,  is the secondary oil recovery efficiency,  is the 
life time of primary recovery,  is the theoretical ultimate recovery 
increment for secondary recovery, and  is the secondary recovery time 
constant for production. Then, the cumulative oil production is calculated as 

  (4.3) 

where  or . 

The geological uncertainty is represented by three realizations (R1, R2, and R3) 
of the production model parameters. The realizations are a priori equi-probable. 
Figure 4.6 illustrates the primary recovery as a function of time for the 
realizations. 

The measured primary recovery efficiency is used to inform our decisions. The 
likelihood functions are listed in Table 4.3. For example, given that the truth is 
R1, the probability of measurement at  saying “high recovery” (i.e., a 
measured recovery efficiency of 0.3) is 1/4, and the probability of measurement 
at  saying “high recovery” (i.e. a measured recovery efficiency of 0.33) is 3/4. 

Our objective is to solve for a decision policy that maximizes the value of the 
flexibility of shifting to secondary recovery at various times. This can be 
achieved using a decision tree. The fully structured decision tree for this 
problem setting is illustrated in Figure 4.7, where the optimal decision policy 
is indicated by the red branches. The optimal ENPV is $2454.45 million. 
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Figure 4.6—Primary recovery as a function of time for three geological realizations. 

 

 

 

 Given the truth is 
R1 R2 R3 

Measurement 
at  says 

“High Recovery” 
(“ ”) 1/4 3/4 1/4 

“Low Recovery” 
(“ ”) 3/4 1/4 3/4 

 

Measurement 
at  says 

“High Recovery” 
(“ ”) 3/4 3/4 1/4 

“Low Recovery” 
(“ ”) 1/4 1/4 3/4 

Table 4.3—Likelihood functions for the measured primary recovery efficiency. 
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Figure 4.7—Fully structured decision tree for the example of an optimal IOR start time 

problem. All NPV values are in million USD. 

We use the modified LSM to solve the same problem. For illustration, we use 
only 5 MC samples. The number of samples will be increased later. We first 
sample 5 paths of the measured data as listed in Table 4.4. Then, we start the 
LSM from the last decision point, as we solve the decision tree backwards. 
Table 4.5 lists the NPVs corresponding to alternatives of “continue (with 
primary recovery)” and “shift (to secondary recovery)” at  for each path. 
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Path Geological 
Realization 

Data at 
 ( )  ( ) 

1 R2 0.30 0.22 
2 R3 0.20 0.22 
3 R3 0.20 0.33 
4 R1 0.20 0.33 
5 R3 0.30 0.22 

Table 4.4—Path of measured data for LSM. 

Path Geological 
Realization 

NPV [million USD] 
Continue Shift 

1 R2 3093.78 3522.07 
2 R3 1046.60 961.51 
3 R3 1046.60 961.51 
4 R1 2838.31 2863.37 
5 R3 1046.60 961.51 

Table 4.5—NPVs for alternatives at time 2 for LSM. 

When we are making the decision at , we have obtained the data at both  
and . Therefore, the ENPV is conditioned on the data at both  and . We 
estimate the ENPV by regressing NPV on the data. Using 

, the resulting conditional expectation function for 
“continue” is . 
The same is done for “shift”. Table 4.6 lists the resulting ENPV corresponding 
to alternatives of “continue” and “shift” at  for each path. The optimal 
decision can now be made by taking the alternative that gives the highest ENPV 
for each path. Each optimal decision is colored in red in Table 4.6. 

Path ENPV [million USD] 
Continue Shift 

1 2070.19 2241.79 
2 1046.60 961.51 
3 1942.46 1912.44 
4 1942.46 1912.44 
5 2070.19 2241.79 

Table 4.6—ENPVs for alternatives at time 2 for LSM. 

We move one time step backwards to . Table 4.7 lists the NPVs 
corresponding to alternatives of “continue” and “shift” at  for each path. The 
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NPVs for “continue” in Table 4.7 come from the NPVs in Table 4.5 for the 
optimal decisions shown in Table 4.6.  

Path Geological 
Realization 

NPV [million USD] 
Continue Shift 

1 R2 3522.07 3576.25 
2 R3 1046.60 686.98 
3 R3 1046.60 686.98 
4 R1 2838.31 2535.09 
5 R3 961.51 686.98 

Table 4.7—NPVs for alternatives at time 1 for LSM. 

When we are making the decision at , only the data at  are available but not 
at . Therefore, the ENPV is conditioned on only the data at . Using 

, the resulting conditional expectation function 
for “continue” is . The same is done for 
“shift”. Table 4.8 lists the resulting ENPV corresponding to alternatives of 
“continue” and “shift” at  for each path, and the optimal decisions are in red. 

Path ENPV [million USD] 
Continue Shift 

1 2241.79 2131.62 
2 1643.84 1303.02 
3 1643.84 1303.02 
4 1643.84 1303.02 
5 2241.79 2131.62 

Table 4.8—ENPVs for alternatives at time 1 for LSM. 

We move to . Table 4.9 lists the NPVs corresponding to alternatives of 
“continue” and “shift” at  for each path. The NPVs for “continue” in Table 
4.9 come from the NPVs in Table 4.7 for the optimal decisions shown in Table 
4.8. 

Because no data are available at , we calculate the ENPVs for “continue” and 
“shift” by calculating the mean of the values in their respective columns in 
Table 4.9. The resulting ENPV for “continue” is $1883.02 million, and that for 
“shift” is $933.69 million. Thus, the optimal decision at  is “continue”, and 
the optimal ENPV is $1883.02. 
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Path Geological 
Realization 

NPV [million USD] 
Continue Shift 

1 R2 3522.07 2973.71 
2 R3 1046.60 69.21 
3 R3 1046.60 69.21 
4 R1 2838.31 1487.11 
5 R3 961.51 69.21 

Table 4.9—NPVs for alternatives at time 0 for LSM. 

The optimal decision policy can be determined by looking back at Table 4.8 
and Table 4.6, and it is represented by Table 4.10. This indicates that we should 
continue with primary recovery up to  irrespective of the measurement at , 
and shift to secondary recovery at  if the measurement says “ ” at  and 
“ ” at . 

Path Data at Optimal Decision at 
 ( )  ( )    

1 0.30 0.22 Continue Continue Shift 
2 0.20 0.22 Continue Continue Continue 
3 0.20 0.33 Continue Continue Continue 
4 0.20 0.33 Continue Continue Continue 
5 0.30 0.22 Continue Continue Shift 
Table 4.10—Table representation of optimal decision policy solved using LSM. 

The optimal ENPV and optimal decision policy solved using the modified LSM 
are different from the analytical solution from the decision tree (Figure 4.7) 
because we used only 5 paths. The accuracy can be improved by increasing the 
number of paths. We increase to 500000 paths and repeat it 1000 times. This 
gives a mean estimated optimal ENPV of $2454.48 million (which is almost 
the same as the analytical solution $2454.45 million) and an SD of $1.49 
million (which is relatively small). 
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5 Value-of-Information in Reservoir 
Management 

The concept of VOI was first introduced in the O&G industry for drilling 
decisions that are related to RM (Grayson 1960). More than 50 years later, this 
concept was adopted to assess the value of information from HM (Barros et al. 
2015, Barros et al. 2016, He et al. 2017). The information from HM is used to 
support decisions on production strategy. 

5.1 Definition of VOI 
The concept of VOI16 originates from the DA community. Schlaifer (1959) was 
the first to define VOI in the context of business decisions. Other early 
references to VOI analysis can be found in Raiffa and Schlaifer (1961) and 
Howard (1966). Its use has been documented in broad areas of real-world 
application, from nuclear waste storage assessment (Eppel and von Winterfeldt 
2008) to biosurveillance (Willis and Moore 2013). Grayson (1960) introduced 
this concept in the O&G industry. Bratvold et al. (2009) presented the definition 
of VOI as well as an overview of its use in the O&G industry. Eidsvik et al. 
(2015) provided an exposition of VOI in the earth sciences. 

VOI analysis is concerned with two fundamental uncertainties: (1) the 
uncertainties we hope to learn about but cannot directly observe, which we call 
the distinctions (or events) of interest; and (2) the test results, referred to as the 
observable distinctions (Bratvold et al. 2009). In the following, we use  to 
denote the distinctions of interest and  to denote the observable distinctions. 

VOI is defined as the most that the DM should pay for additional information 
on the distinctions of interest. It is calculated before the additional information 
is actually acquired. If the DM is risk neutral, then17 

                                                      
16 To separate “value-of-information (VOI)” from other definitions, we use the term as 
it is defined in the DA community. 
17 This is not the general definition of VOI. This formulation is true only if the DM is 
risk-neutral or risk-averse with an exponential utility function (Bratvold et al. 2009). 
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(5.1) 

If the additional information is perfect (i.e., the information reveals the truth), 
we refer to the VOI as the value-of-perfect-information (VOPI) or the value-
of-clairvoyance (VOC). No test, no matter how sophisticated, can be worth 
more than the VOPI (Bratvold et al. 2009). 

In mathematical form, 

  (5.2) 
  (5.3) 

where  is the EV without additional information and  is the EV 
with additional information. The lower bound of VOI is always 0 because if  
is negative when , one can always choose to not gather the 
information. VOI is an indicator of the maximal buying price or cost of an 
information-gathering activity. If the VOI is greater than the cost, the DM 
should gather the information; otherwise, the DM should not do so. 

The decision without information (DWOI) is the alternative that optimizes EV 
over the prior, and the EVWOI is the optimal EV over the prior, i.e., 

  (5.4) 

  (5.5) 

where  is an alternative from the decision space ,  is the DWOI,  
is the value function that assigns a value to each alternative-outcome pair for a 
given , and  is the prior probability distribution of . Similarly, for given 
observations, the decision with information (DWI) is the alternative that 
optimizes EV over the posterior, i.e., 
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(5.6) 

 
 

(5.7) 

where  denotes the optimal decision policy,  is the DWI given 

observations ,  is the posterior probability distribution, and  is 
the optimal EV over the posterior. The posterior probability distribution is 
assessed by using Bayes’ theorem. 

Before a DM actually acquires information, the observations  is an uncertain 
quantity. Thus, the EVWI is defined as the expectation over the observations, 

 
 

(5.8) 

or , equivalently 

  (5.9) 

where  denotes a joint space of  and , and  stands for the 

integration over all combinations of  and . The rest of this thesis refers to Eq. 
5.8 as Formulation 1 (F1) and Eq. 5.9 as Formulation 2 (F2). F1 is the standard 
formulation used in VOI’s definition and is commonly used for VOI calculation 
because its order of integrals is consistent with the steps of solving a decision 
tree for the case with information. We define F2 in addition because it is 
relevant to the MC approach that we will discuss in Section 5.3.3. 

Eqs. 5.6–5.9 do not show explicitly time-dependent components. Each 
component of the decision vector  is a function of all the observations 
available at the time of evaluating the decision. The Bellman equation contains 
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a complete expression of Eq. 5.8 for a time-dependent system  (Eidsvik et al. 
2015, Bellman 1957). 

5.2 VOI Calculation for Continuous Probability 
Distributions 

An analytical solution for Eq. 5.8 does not exist for many cases involving 
continuous probability distributions. In these contexts, VOI calculation can be 
performed only using numerical approximation. Such methods include MCS or 
discretization rules (e.g., extended Pearson-Tukey, McNamee-Celona shortcut, 
or extended Swanson-Megill). Bickel et al. (2011) compared these 
approximation methods for cases where both the prior and likelihood functions 
were normal distributions, and they concluded that all the above-mentioned 
discretization rules result in significant errors in the VOI estimate and that 
numerous MC samples are required for an accurate VOI estimate. 

The accuracy of VOI estimate depends on the decision characteristics resulting 
from the probability distributions and how well these are preserved using a 
heuristic discretization method or MCS. 

5.2.1 High Resolution Probability Tree Discretization 
Method 

We introduce a discretization method called the high resolution probability tree 
(HRPT) approach, which approximates a probability distribution by 
discretizing the space of an uncertain quantity into numerous outcomes. The 
following briefly presents this approach and its advantage. More details on the 
development and discussion of the HRPT approach can be found in Paper IV. 

Figure 5.1 illustrates the discretization of a probability distribution  with 
9 degrees18 and its comparison to MC sampling with 9 samples. The continuous 
probability distribution is represented by the blue curve, the HRPT discretized 
outcomes by the orange dots, and the MC samples by the black rings. The shape 
of the continuous probability distribution is better preserved by the HRPT 
                                                      
18 The number of degrees is referred to as the number of discrete outcomes, which is 
also the number of branches for an uncertainty node in a decision tree. 
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discretized outcomes than the MC samples because the HRPT discretized 
outcomes distribute evenly throughout the range of , whereas most of the MC 
samples cluster around the mode. Better preservation of the shape of the 
continuous probability distribution can better preserve the decisions 
characteristics and in turn improve the accuracy of VOI estimate. 

If the number of degrees for HRPT equals the number of MC samples, the 
computational time for VOI estimation is the same using HRPT as using MCS. 
Thus, using HRPT won’t introduce additional computational time for VOI 
estimation, compared to MC method. 

 
Figure 5.1—Illustration of HRPT discretized outcomes and MC samples for a continuous 

probability distribution. 

5.2.2 Accuracy of HRPT 
We investigate a two action linear-loss normal (TALL-N) problem to explore 
the accuracy of HRPT. The reason for using a TALL-N problem is that its VOI 
can be calculated analytically using the formula derived by Bickel (2008). 

The TALL-N problem is as follows. A risk-neutral DM is considering whether 
or not to drill a well in an undeveloped area. The DM is uncertain about the 
NPV for the well and a priori characterizes it by a normal distribution with a 
mean of $10 million and an SD of $20 million. If the well is not drilled, the 
NPV is a sure $0. To improve this decision, a seismic survey can be conducted 
at a cost. The DM uses a positive correlation coefficient  to describe the 
correlation between the true value of the well and the seismic results. We 
consider the value of  being any of 0.70, 0.71, 0.72, …, 1.00 because the VOI 
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error is significant when  for this example.19 The VOI for the seismic 
survey needs to be calculated to support the decision of whether the DM should 
pay for conducting the seismic survey. For this TALL-N problem, the VOI has 
a closed-form solution, as presented by Bickel (2008). In order to assess how 
well HRPT approximates the analytical solution for different  values, we 
calculate the VOIs analytically and using HRPT with various degrees, and then 
calculate the error of the HRPT estimate relative to the analytical solution. The 
average relative VOI error is calculated by averaging over all the  values. 
Figure 5.2 shows the average relative VOI error as a function of the number of 
degrees.  

 
Figure 5.2—Average relative VOI error as a function of the number of degrees for the 

TALL-N problem. 

In this figure, the average relative VOI error decreases (i.e., the accuracy of 
HRPT increases) as the number of degrees increases. The average relative VOI 
error is as small as 3.5% with only 10 degrees, and it is further reduced to 0.25% 
with only 30 degrees. 

Paper IV investigates the accuracy of applying HRPT for VOI estimation to 
two other structures of prior distribution—PERT and lognormal distributions. 
These distributions are used extensively in the O&G industry. 

                                                      
19 The value of  is allowed to be any from 0 to 1. 
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5.2.3 Comparison of HRPT and MC-based Methods 
We compare the accuracy of using HRPT, Bayes Monte Carlo (BMC), and 
EnKF in estimating VOI for a TALL-N problem. Both of the latter two methods 
use MC sampling, but in different manners (see the appendices in Paper IV for 
detailed description of these two methods). This comparison provides an 
indication of how many MC samples are required to provide an equally good 
estimate as using HRPT. 

The TALL-N problem for this comparison is as follows. A risk-neutral DM is 
considering whether to conduct a project: if the expected revenue of the project 
is positive, it will be conducted; otherwise, not conducted. The DM is uncertain 
about the revenue of the project and a priori characterizes it by a normal 
distribution with a mean of $3 million and an SD of $10 million. Information 
on the revenue can be obtained at a cost. The information has a Gaussian 
distributed error with zero mean and an SD of $5 million. The VOI for this 
information needs to be calculated to support the decision of whether the DM 
should pay for this information. 

The comparison is shown in Figure 5.3. To achieve a relative VOI error of 
0.75%, HRPT requires 20 degrees, EnKF requires 80 ensemble members, and 
BMC requires more than 18000 MC samples. To achieve a relative VOI error 
of 0.5%, the number of degrees for HRPT would need to be increased only to 
30, but the necessary ensemble size for EnKF would exceed 10000 and the 
required number of MC samples for BMC would far exceed 18000.20 This 
indicates that HRPT is significantly more efficient than the other two methods 
in calculating the VOI for a TALL-N problem. 

Although a closed-form solution exists for the TALL-N problem, this type of 
problem is constrained with Gaussian distributions, two actions, and linear 
value function. Thus, there is a need for more general solutions that would allow 
the VOI principle to be applied in real-world settings having any distributions, 

                                                      
20 We did not calculate the relative VOI errors from using EnKF with more than 10000 
samples or the BMC with more than 18000 samples because our computer did not have 
sufficient memory. 
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any number of actions, and any value function. A possible solution will be 
illustrated and discussed in the next section. 

 
Figure 5.3—Relative error of VOI estimates using HRDT, BMC, and EnKF. 

5.3 VOI Calculation for Reservoir Management 
In a given RM context, there might be hundreds of relevant uncertain quantities. 
If we use HRPT with 30 degrees for each uncertain quantity, then having 100 
uncertain quantities would mean 30100 combinations of discretized outcomes, 
once again raising the “curse of dimensionality.” Thus, a different method is 
required for calculating VOI for many RM decision problems. 

5.3.1 Relationship between Terms in VOI Analysis and 
Reservoir Management 

Decision analysts and reservoir engineers use different terms in VOI analysis. 
Thus, it can be difficult for decision analysts and reservoir engineers to 
understand each other and communicate efficiently on decision problems. To 
alleviate this difficulty, Table 5.1 gives the two disciplines’ corresponding 
terms for common VOI concepts. 
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Table 5.1—Relationship between terms used in VOI analysis and those in RM. 
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Assume a production model (e.g., an ECLIPSE reservoir simulation model) that 
formulates the dynamics of reservoirs is already given. Examples of the 
distinctions of interest in a RM context are the permeabilities in every grid 
block cell, and examples of the observable distinctions are the oil rates 
measured at different times. The priors are the probability distributions of the 
permeabilities based on current knowledge; the likelihoods are the probability 
distributions over the measured oil rates given the permeabilities; the 
preposteriors are the probability distributions over the measured oil rates; and 
the posteriors are the probability distributions over the permeabilities given the 
measured oil rates. 

5.3.2 Decision-tree Example of VOI Calculation for 
Reservoir Management 

We use a decision-tree example to illustrate the standard procedure of VOI 
analysis in an RM context. 

We assume that a production model  is given but that its parameters  (say, 
the permeability distribution) are uncertain and that once we have determined 
the values for these parameters, the model itself will correctly “predict” future 
production. We consider three realizations of the permeability distribution, 
denoted ,  and . These realizations are equi-probable a priori. We are 
considering whether to measure and match the oil production rate at time . The 
information provided by the measured data is used to support the decision on 
choosing one of three production strategies , , and  for time  forward. 
We want to estimate the value of the data measurement at time . 

The predicted oil production rates  by the three realizations are shown in 
Figure 5.4, where  is the oil production rate predicted for the period from 
time  to , which is obtained by running the production model  with 
parameters  and a production strategy . If the measurement is perfect, we 
will definitely measure a high rate  given the permeability distribution of 

. Because of measurement errors, the probability of measuring a high rate 
 is 4/5 and of measuring a low rate  is 1/5 given . That is, the 

likelihood  and . The likelihood function 
is listed in Table 5.2. 
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Figure 5.4—Oil production rate profiles of three realizations. 

 
Table 5.2—Likelihood function for the decision tree example. 

Figure 5.5a shows the uncertainty tree with the prior and likelihood 
probabilities in assessed form. Its corresponding inferential form (flipped tree) 
is shown in Figure 5.5b, where the preposterior and posterior probabilities are 
shown. These probabilities are calculated using Bayes’ theorem, from the given 
prior and likelihood probabilities. 

(a) Assessed Form: Information we have (b) Inferential Form: Information we need 

 
 

Figure 5.5—Uncertainty trees in (a) assessed form, and (b) inferential form. 

( )
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The decision tree for the case with information, as illustrated in Figure 5.6 
where all monetary values are in million USD, is constructed by including 
decision and payoff nodes in the flipped uncertainty tree (Figure 5.5b). Solving 
the decision tree yields the optimal decision policy that if we have measured a 
low rate , the optimal production strategy is ; if we have measured a high 
rate , the optimal production strategy is . This results in the optimal EV 
(i.e., EVWI) of $70.8 million. 

 
Figure 5.6—Decision tree for the case with information. 

Figure 5.7 illustrates the decision tree for the case without information. The 
DWOI is  and EVWOI is $67.3 million. The VOI is thus $70.8 million – 
$67.3 million = $3.5 million. The information creates a value of $3.5 million 
because it holds the possibility to change the decision when it becomes 
available. If the cost of acquiring the information is lower than $3.5 million, we 
should conduct the measurement; otherwise, we should not. 

 
Figure 5.7—Decision tree for the case without information. 
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5.3.3 VOI Calculation Using Ensemble-based Methods 
for Reservoir Management 

MC sampling is an easily accessible and powerful approach to handle 
continuous probability distributions and numerous uncertain quantities. MC-
based methods, such as EnKF for Bayesian inference and EnOpt for RO (i.e., 
identifying the optimal alternative), can also be used to calculate VOI, as will 
be discussed below. 

5.3.3.1 The BvHJ Approach 

An approach of using EnKF and EnOpt for VOI calculation was proposed by 
Barros et al. (2016). We refer to this as the BvHJ approach. 

The BvHJ approach is derived using common terminology in reservoir 
engineering. It is based on a twin experiment where the DWI and DWOI are 
valued on a synthetic truth and where the difference between the values 
corresponding to the DWI and DWOI is calculated. A synthetic truth in the 
BvHJ approach is a realization drawn from the prior probability distribution. 

 realizations are first drawn from the prior probability distribution, one of 
which is then chosen as a synthetic truth, and the rest form the prior ensemble 
with  realizations (Barros et al. 2016). The procedure of conducting a 
twin experiment is repeated for all  synthetic truths. For each synthetic truth, 
there is a corresponding difference between its values corresponding to the 
DWI and DWOI. The BvHJ approach then calculates the VOI as the EV over 
all these differences associated with synthetic truths. Figure 5.8 shows the 
procedure of VOI calculation using the BvHJ approach. 

In the BvHJ approach, the concept of synthetic truth is central to the analysis. 
However, “synthetic truth” has no meaning in VOI analysis. In reservoir 
engineering, a synthetically true model is used to mimic the actual state of a 
reservoir, by which reservoir engineers can investigate whether the actual 
outcome falls within the range that was predicted by updated models. This is 
not the case in VOI analysis, where the importance is to inform decisions, which 
in turn requires relevant and material uncertainties be quantified and analysis 
of how new information will update the distribution over the distinctions of 
interest and thus potentially affect the decisions. Moreover, VOI as defined by 
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Barros et al. (2016) implies a VOI distribution.  However, as shown by Bratvold 
et al. (2009), the VOI is not a distribution but the difference between two 
expected values. Thus, the BvHJ approach is inconsistent with the definition of 
VOI analysis. However, two small modifications to the BvHJ approach can 
address this, as we will show later. 

 
Figure 5.8—Procedure of VOI calculation using the BvHJ approach. Adapted from 

Barros et al. (2016). 

5.3.3.2 Derivation of an Approach Consistent with VOI’s 
Definition 

Barros et al. (2016) did not elaborate on the connection between their approach 
and VOI analysis as defined in DA (Bratvold et al. 2009). We seek to 
accomplish this by deriving an approach using DA terminology and definitions.  
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Prior.  MC samples are drawn from the prior probability distribution  
to form the prior ensemble [ , , …, ]. The probability of each sample 

 is . The prior ensemble is an MC representation of the prior 
probability distribution. 

Likelihood. The likelihood function  is assessed through a measurement 
noise distribution. For a dynamic system, we have the following mathematical 
relationship between the model parameters and measured data at time : 

  (5.10) 
  (5.11) 

where the subscript  is the index of time,  is a production model, and  
is a vector of the measurement noise at time . When using EnKF together 
with a reservoir simulation model, the standard practice is to assign a 
multivariate Gaussian distribution to  with zero mean and a diagonal 
covariance matrix  (i.e., ); this yields 

. Therefore, assessing a probability distribution 
for the measurement noise is equivalent to assessing the likelihood function. 

Preposterior. The MC samples representing the preposterior probability 
distribution   can be generated as follows: (1) draw an MC sample  from 

 (this is done when the prior ensemble has been generated), (2) run the 
model  to time  to obtain a realization of the predicted 
observations , (3) draw an MC sample  from , (4) add  
to  to obtain a sample of the observations with noise , and (5) repeat 
steps (1)–(3) to generate a set of , [ , , …, ], which is the 
preposterior ensemble representing the preposterior probability distribution. 
Moreover, the samples of ( , )-pairs [( , ), ( , ), …, ( , )] 
represent the joint probability distribution . 

Posterior. The posterior ensemble [ , , …, ], representing 
the posterior probability distribution , is generated by using EnKF to 
update the prior ensemble with the given observations  and assessed 
measurement noise . 
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DWOI and EVWOI. We identity the DWOI and calculate the EVWOI using 
Eq. 5.12 (the MC form of Eq. 5.4) and Eq. 5.13 (the MC form of Eq. 5.5), 
respectively, 

  (5.12) 

  (5.13) 

DWI. We identify the DWI for the given observations using Eq. 5.14 (the MC 
form of Eq. 5.6), 

  (5.14) 

EVWI. The EVWI can be calculated using either Eq. 5.15 (the MC form of F1 
(Eq. 5.8)), 

  (5.15) 

 or Eq. 5.16 (the MC form of F2 (Eq. 5.9)), 

  (5.16) 

VOI. The VOI is calculated using Eqs. 5.2 and 5.3. 

A schematic of VOI calculation using MC-based methods is shown in Figure 
5.9. 
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Figure 5.9—Schematic of VOI calculation using MC-based methods. 

5.3.3.3 Comparison of the Approaches for VOI Calculation 

The F2 approach is compared first with the BvHJ approach and then with the 
F1 approach.  

F2 Approach vs. BvHJ Approach. There are two differences between these 
approaches. The first is that in the F2 approach, no realization is excluded from 
the prior ensemble; whereas in the BvHJ appraoch, a “synthetic truth” is 
excluded from the prior ensemble and the remaining ensemble members form 
a new prior ensemble. This difference leads to different VOI estimates as will 
be discussed later. The second difference is that the F2 approach calculates VOI 
as the difference between two EVs, whereas the BvHJ approach calculates VOI 
as an EV of a set of differences. Although the second difference does not affect 
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the VOI estimate, it constitutes a conceptual difference. The BvHJ approach 
with two minor modifications with respect to these two differences is identical 
to the F2 approach that is consistent with the VOI definition. 

F2 Approach vs. F1 Approach. Based on the law of large numbers, these two 
approaches give the same limit when the ensemble size   approaches infinity. 
However, the convergence rate can be different, resulting in different estimates 
when the ensemble size is small because these two approaches introduce 
different levels of sampling error. 

Accuracies of the Approaches. We use an example to investigate the accuracy 
of the VOI estimates of the three approaches. 

Consider that the distinction of interest  is the revenue of a project and that the 
observable distinction  is the information on the revenue. The relationship of 

, , and the error of the information  is . A priori,  is normally 
distributed with mean  and standard deviation , i.e., the prior 

.  is normally distributed with zero mean and standard 
deviation , i.e., the likelihood function . The decision  to 
be made is whether the project will be conducted;  and  correspond 
to “conduct” and “not conduct,” respectively. If the expected revenue is 
positive, the project should be conducted; otherwise, it should not. Thus, the 
value function is . With ,  and  
(the monetary unit can be arbitrary here), the VOI for this problem setting can 
be calculated analytically, which is 2267. 

We first test the three approaches using a large ensemble size: 10000. The VOI 
estimates are listed in Table 5.3. The BvHJ approach gives a result almost 
identical to that of the F2 approach because the impact of excluding a “synthetic 
truth” (i.e., an ) from the prior ensemble is very small when the ensemble size 
is large. The VOIs calculated using the F1 and F2 approaches differ slightly. 
All three methods estimate the VOI with an error smaller than 1%. 
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Approach Analytical BvHJ F1 F2 
VOI 2267 2283 2246 2283 

Error - 0.71% 0.93% 0.71% 
Table 5.3—VOI estimates using BvHJ, F1, and F2 approaches with ensemble size of 

10000. 

Then, a small ensemble size, 50, is used. The VOI calculation is repeated 10000 
times for each approach. The statistics of the VOI estimates are listed in Table 
5.4, and the probability density functions (PDFs) are plotted in Figure 5.10.21  
Among the three approaches, the F2 approach is the most accurate, as it gives 
the best VOI estimate on average and has the smallest SD in its estimates. More 
detail on why the F2 approach is better is given in Paper V. 

Approach BvHJ F1 F2 
Average 2323 2257 2259 

Error 2.47% 0.44% 0.35% 
SD 933 776 695 

[Min, Max] [0, 10421] [0, 5497] [0, 5279] 
Table 5.4—Statistics of VOI estimates of BvHJ, F1, and F2 approaches with ensemble size 

of 50. 

 
Figure 5.10—PDFs of VOI estimates of BvHJ, F1, and F2 approaches with ensemble size 

of 50. 

This example has demonstrated that the three approaches give almost 
equivalent results for large ensembles. However, they can lead to quite different 
results when the ensemble size is small. As there are no significant 

                                                      
21 Here, the uncertainty in the VOI estimate is due to the sampling error associated with 
MC methods. As discussed earlier, the VOI itself is not a distribution but the difference 
between two expected values. 
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computational increases resulting from using the F2 approach for VOI 
calculation with MC methods, this would be our approach of choice. 

5.3.3.4 Example of Applying the F2 Approach with a Reservoir 
Simulation Model 

We briefly show an example of applying the F2 approach to estimate VOI for 
a more realistic case, where a reservoir simulation model is involved. For more 
details on the model and problem setting, please refer to Paper V. 

VOI analysis is used to analyze whether devices should be placed for acquiring 
saturation data, in addition to oil and water production rate data. The measured 
data are used to support the decision on polymer concentration in the enhanced-
oil-recovery (EOR) phase. 

The VOI is calculated using the F2 approach combined with EnKF and EnOpt. 
The resulting VOIs for rate data only, saturation data only, and both rate and 
saturation data, and VOPI are listed in Table 5.5. The values of rate data and 
saturation data are very close to each other. Although the saturation data has a 
value of $3.36∙105 when it is considered individually, it adds a value of only 
$1.01∙105 (= $4.11∙105 – $3.10∙105) to that of the rate data. This indicates that 
VOI is not additive (Samson et al. 1989). The VOI analysis informs us that we 
should not gather saturation data in addition to rate data if the cost of placing 
saturation measuring devices is greater than $1.01∙105. The VOPI is $6.12∙105, 
which is $6.12∙105 – $3.10∙105 = $3.02∙105 more than the value of rate data. 
Therefore, we should decline any other data gathering activity that costs more 
than $3.02∙105 given that the rate data will be gathered. 

Data Type Rate 
Only 

Saturation 
Only 

Rate and 
Saturation 

Perfect 
Information 

VOI [105 USD] 3.10 3.36 4.11 6.12 
Table 5.5—VOI estimates for the example with a reservoir simulation model. 
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6 Overview of Research Papers 

Paper I: Integrating Model Uncertainty in Probabilistic Decline 
Curve Analysis for Unconventional Oil Production Forecasting 

This paper introduces an approach to integrating model uncertainty in 
probabilistic decline curve analysis. The aim is to assess the probabilities of 
different decline curve models and use these probabilities for further analysis 
instead of identifying and using a “best” model for decline curve analysis. We 
focus on unconventional oil production because the widely used Arps decline 
curve model might not be ideal for unconventional play; thus, several novel 
decline curve models have been proposed. Examples are used to illustrate the 
impact of the integration of model uncertainty. The proposed approach is 
applied to real data. We conclude that using our proposed approach can reduce 
the risk of using a best fit but very wrong model for forecasting and that our 
proposed approach performs well in propagating the model uncertainty to the 
uncertainty in forecast. 

Paper II: Robust Production Optimization with Capacitance-
Resistance Model as Precursor 

This paper presents a proxy-model workflow where a grid-based model is 
supplemented by a useful yet tractable proxy model for speeding up the process 
of RO. Specifically, we review CRMs as potential proxy models for 
waterflooding systems. A selected CRM is embedded into the proxy-model 
workflow. We illustrate the use of a CRM and investigate its pros and cons 
using synthetic 2D and 3D models. The results obtained from the proxy-model 
and traditional workflows are compared. The impact of any differences is 
assessed, and the value of using a proxy model is quantified by considering a 
PO-relevant decision-making context. We discuss the desiderata of proxy 
models. We conclude that CRMs have high potential to serve as a cogent proxy 
model for waterflooding-related decision-making contexts and that the proxy-
model workflow, leveraging a faster but relevant production model, 
significantly speeds up the optimization yet gives robust results that lead to a 
near-optimal solution. 
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Paper III: Fast Analysis of Optimal IOR Start Time Using a Two-
Factor Production Model and Least-Squares Monte Carlo 
Algorithm 

This paper presents an approach of using a two-factor production model 
together with the LSM algorithm for fast analysis of optimal IOR start time. 
We review the two-factor production model introduced by Parra-Sanchez 
(2010). This production model is computationally more attractive than a more 
complex model, such as a reservoir simulation model. Thus, using it can 
significantly speed up the uncertainty analysis where a large number of 
production forecast runs is required. Identifying the optimal IOR start time 
using LSM allows for learning over time. Unlike the myopic decision policy, 
which considers only the current information, LSM considers both the current 
information and the information that will be obtained in the future. Therefore, 
the LSM solves approximately for the global optimum of an FSRM problem. 
The impact of allowing learning over time in decision making is quantified 
using the VOI framework. An example illustrates the application of the 
proposed approach. We conclude that combining the two-factor model with 
LSM facilitates a fast analysis of optimal IOR start time and that it can create 
significant value to include learning over time in decision making. 

Paper IV: Robust Discretization of Continuous Probability 
Distributions for Value-of-Information Analysis 

This paper introduces a practical, flexible, efficient, and very general 
discretization method for continuous probability distributions involved in VOI 
analysis. This discretization method is validated by comparing its VOI estimate 
to the analytical solutions. Commonly used discretization methods for VOI 
calculation are reviewed and compared to the proposed method. In addition, we 
investigate two MC-based methods for VOI calculation. We conclude that the 
proposed discretization method estimates VOI very accurately (with a relative 
error of around 0.25% using a degree of discretization of only 30), that the 
commonly used discretization methods generally give poor VOI estimates, and 
that more than thousands of MC samples are required for the MC-based 
methods to provide accurate VOI estimates. 
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Paper V: Value-of-Information for Model Parameter Updating 
through History Matching 

This paper presents a consistent, DA-based VOI analysis framework to assess 
the value of HM. It is consistent and DA-based because it is derived from VOI’s 
definition originally developed in the DA community. In order to make the VOI 
framework understandable and accessible to both the RM and DA 
communities, we bridge the nomenclature and terminology used in VOI 
calculations and that used in state-of-the-art HM and PO methods. In particular, 
our framework uses EnKF for Bayesian inference and EnOpt for RO. We 
discuss two formulations (F1 and F2) of VOI calculation. In addition, we 
investigate the similarities and differences between the F2 approach and the 
BvHJ approach. Several examples are used to illustrate and discuss the use of 
this framework in an HM context. We conclude that the BvHJ approach with 
two minor modifications will be identical to the F2 approach, and that the F2 
approach gives the most accurate VOI estimate among the three approaches 
investigated. 
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7 Summary and Conclusions 

RM involves a process of gathering data and information to inform and support 
decision making. HM is used to extract information from measured data. The 
information is then used to support the decisions on production strategies 
through an optimization process. Thus, RM is a decision-oriented activity, for 
which a DA framework will add value. 

The major goal of DA is to make good decisions. This requires the 
quantification of relevant and material uncertainties, a consistent way of 
updating uncertainties when new information arrives, and a means to assess the 
value of such information. We referred to this combination of activities as 
“decision-focused uncertainty management.” 22  This work illustrated and 
discussed a decision-focused uncertainty-management framework for RM 
using DA tools, with a focus on geological uncertainty. 

We first investigated how geological uncertainty should be managed for the 
goal of making good decisions in HM and PO separately, and then investigated 
how it should be managed in RM as a loop of HM and PO. We finally 
investigated how to incorporate a powerful decision analysis tool—VOI 
analysis—into RM. 

To manage geological uncertainty in HM, HM should be conducted 
probabilistically rather than deterministically. Probabilistic HM approaches use 
probability distributions to quantify uncertainties. Probabilistic HM can be 
achieved by simply repeating deterministic HM in an MC manner, such as the 
Bootstrap method (Section 2.1.2.2) or the P-MLE method (Section 2.1.2.3). 
When normal distributions are used to represent a DM’s uncertainties, EnKF is 
a proven method for Bayesian HM. It can efficiently update a production model 
with numerous uncertain parameters. To integrate model uncertainty in decline 
curve analysis, we proposed an approach to assess the probabilities of various 
decline curve models by repeating the P-MLE method for each decline curve 

                                                      
22  For brevity, the phrase “decision-focused uncertainty management” was simply 
referred to as “uncertainty management” throughout this thesis. 
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model, and concluded that considering model uncertainty gives a more 
complete estimate of uncertainty in a production forecast. 

Geological uncertainty in PO can be managed by optimizing the EV over 
geological realizations if the DM is risk-neutral. This is known as RO. 
However, the challenge is that when a traditional optimization algorithm is 
used, to optimize the EV over numerous geological realizations is much more 
computationally intensive than to optimize the value of a single realization. 
EnOpt is designed to address this challenge. It is based on the traditional 
steepest ascent method, but it uses a more efficient approach to approximate 
the gradient.  Although EnOpt has significantly sped up RO, the computational 
time can still be long when a reservoir simulation model is involved. Thus, we 
proposed a proxy-model workflow where a CRM is used to supplement a 
reservoir simulation model for RO. The results showed that the proxy-model 
workflow gives a near-optimal solution with significantly reduced 
computational time. 

CLRM is a state-of-the-art approach to managing geological uncertainty in RM. 
It closes the loop of HM and PO by continuously updating a production model 
and performing life-cycle optimization whenever new data become available. 
However, it is based on a myopic decision policy, in that it does not account for 
future uncertainty revelations and their impacts on future decisions. Thus, the 
CLRM solution can be suboptimal. Since RM is a sequential decision-making 
problem, it should consider whether geological uncertainty informed by current 
data or by future information. We demonstrated the full structure of a dynamic 
programming approach to RM decision making using decision trees. FSRM has 
a more complex structure and requires longer computational time than does 
CLRM. However, the optimal solution of FSRM is a global optimum. The LSM 
algorithm is very efficient for solving an FSRM problem with relatively small 
numbers of decisions and of decision alternatives. It does not suffer from the 
“curse of dimensionality” as the number of uncertainties increases. We 
illustrated this by an example of using LSM combined with a two-factor model 
to identify the optimal IOR start time. 

VOI analysis assesses the value of additional information before it is obtained. 
The assessed value is used to support the decision on whether to buy the 
additional information. We proposed the HRPT method to discretize 
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continuous probability distributions used in VOI calculation. It was compared 
with other common discretization methods and MC-based methods. The 
comparison showed that HRPT provides significantly more accurate VOI 
estimates than do the other methods. 

Although the concept of VOI has been illustrated and discussed in an RM 
context by other research, there is a gap between the terms used in the DA and 
RM communities for VOI analysis. This may make the communication 
between these two communities difficult. To reduce the gap, we related the RM 
terminology to the VOI terminology commonly used in DA and derived a 
general VOI analysis framework for RM, based on VOI’s definition. We 
compared the VOIs estimated using different formulations. We found that 
although these formulations give the same analytical results, the results from 
their numerical implementations can be different when MC methods are used. 
The results showed that the F2 approach provides a more accurate VOI 
calculation. 

This thesis used several examples to illustrate insights and guidance for 
managing geological uncertainty with DA tools in RM. Challenges remain in 
practice that might prevent the development of a broad and deep understanding 
and routine application of DA. Nevertheless, we are optimistic about the value 
of applying DA in RM and the entire O&G industry. 
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8 Discussion and Future Research 

Our work has shown the value of implementing DA to manage geological 
uncertainty in RM. We propose the following areas for future research. 

As engineers and geoscientists, we have been taught a modeling philosophy 
that emphasizes detailed deterministic realism. However, as the main purpose 
of a model used in an RM context is to inform and support decisions, we need 
to evaluate whether any model is useful and tractable for that purpose. Building 
in a lot of details into our production models (e.g., building reservoir simulation 
models) might not serve this purpose. Less detailed models that allow us to 
consistently capture our uncertainties will often do a better job in informing and 
supporting decision making. Details can then be added to the model if they are 
deemed to be relevant and material for the decisions at hand. 

Although the current state-of-the-art production models are suitable for some 
types of RM decision, they often include detailed features that are not relevant 
and material for other decisions. This makes decision analysis for RM 
computationally intensive or even prohibitive. More focus should be on 
production models that are both useful and tractable for decision making. CRM 
is a cogent model for the context of deciding water injection rates for 
waterflooding. It should be extended to include more features (e.g., adding new 
wells and chemical flooding) so that other RM-relevant decision contexts can 
benefit from its speed. 

CLRM, as the state-of-the-art RM tool, is based on a myopic decision policy 
and thus can result in suboptimal solutions. Because the computational 
requirement for solving a CLRM problem is significantly less than that for an 
FSRM problem, CLRM might be regarded as a simplification of FSRM. 
However, it is never a substitute for FSRM. Future research should focus on 
investigating the differences between CLRM and FSRM solutions and on more 
efficient methods for solving an FSRM problem. 

Since data are gathered for informing decisions on production strategies, HM 
should be decision-driven rather than data-driven. “Data-driven” means that we 
first gather data and then consider what decision the data can inform. In 
contrast, “decision-driven” means we first identify the decisions we are going 
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to make and then consider what data should be gathered to inform these 
decisions. The advantage of decision-driven HM is that we can avoid spending 
money on valueless data gathering activities. Thus, future research should focus 
on decision-driven HM using a VOI analysis framework. 

Our work considers only one decision point in VOI analysis for RM. Although 
Barros et al. (2015) extended the BvHJ approach to account for sequential 
decisions, they calculate the exclusive VOI for CLRM rather than the general 
VOI for FSRM. Because CLRM might result in suboptimal solutions as 
discussed earlier, the VOI for CLRM may be smaller than the VOI for FSRM 
(the VOI defined in the DA community). Focus should be on efficient methods 
to calculate the VOI for FSRM. 

The present work focused on geological uncertainty. Future research should 
also consider economic uncertainty (e.g., the uncertainty in oil price) in RM. 
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Abstract 
Decline curve analysis is an industry-accepted and extensively used method in the oil and gas industry. As a result 
of the realization that the long-used Arps model may not be ideal for describing flow from unconventional plays, 
and may lack physical parameters, several models have been developed to capture the characteristics of different 
flow regimes. 

model has a unique extrapolation and uncertainty. No one model is best in all circumstances, so instead of 
identifying a single production, we propose to regard any model as a potentially 
good model whose goodness is described by a probability representation. These probabilities of the models are 
further used to weight the model forecasts. 

The main contributions of this work are (1) using probability to describe the goodness of a model, (2) an 
approach to integrate the model uncertainty in probabilistic decline curve analysis, (3) illustration and discussion of 
the impact of the model uncertainty, and (4) to illustrate our proposed approach in a real case. 

We demonstrate and conclude that using our proposed approach can reduce the risk of using a best fit but very 
wrong model for forecasting. Our proposed approach performs well in propagating the model uncertainty to the 
uncertainty in forecast. 
 
Introduction 
Although numerical techniques for forecasting hydrocarbon production have developed rapidly over the past 
decades, decline curve analysis (DCA) remains an industry-accepted method that is used extensively in the oil and 
gas industry. Decline curve models are very computational attractive because only production data, which can be 
easily acquired, is required for determining the parameter values of a decline curve model through history matching. 
The history-matched model is further used for forecasting the hydrocarbon production and reserves. 

The Arps (1945) model1 has been used extensively for both conventional and unconventional plays. However, 
the Arps model may not be ideal for unconventional plays because unconventional wells usually completed with 
hydraulic fractures so that several flow regimes (formation linear flow, apparent boundary dominated flow by 
fracture interference, linear flow in unstimulated matrix and true boundary dominated flow) may appear during the 
life of a well (Joshi and Lee 2013). Therefore, several alternative decline curve models have been developed to 
capture the characteristics of different flow regimes. Examples are the power law exponential model (Ilk et al. 
2008), the stretched exponential model (Valko 2009), the Duong (2011) model, the logistic growth model (Clark et 
al. 2011) and the Pan (2016) capacitance-resistance model (CRM).  

Given these models, a question, that arises naturally, but has not been discussed widely, is: which is the best 
model? This question is subtler than it appears 
the model that can best fit the data in a least squares sense is regarded as the best model. However, this ignores two 
facts: the best-fit model may not be the model that best describes the flow behavior and there may be several models 
which fit the data almost equally well. 

In deterministic DCA, a single model with best-fit parameter values is used for forecasting. Deterministic 
analysis alone does not quantify the uncertainty in a forecast and thus it often leads  result. A 

                                                           
1 Commonly, the Arps model is categorized into three types based on the value of the decline exponent exponential ( ), 
hyperbolic ( ) and harmonic (
allowing . 
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uely probabilistic/uncertain sense is more useful and essential for decision making (Read 
1920, Bratvold and Begg 2008). 

Although probabilistic DCA has not been used extensively in the industry, it is gathering more focus. Jochen and 
Spivey (1996), and Cheng et al. (2010) used a bootstrap method with the Arps model to quantify the uncertainty in 
forecast for conventional plays. Gong et al. (2014) used Markov-chain Monte Carlo (MCMC) method with the Arps 
model to quantify the uncertainty in forecast for unconventional plays. These authors considered measurement errors 
in decline curve analysis.2 However, they assumed that a model for forecasting flow behavior is already given. 
Gonzalez et al. (2012) used MCMC with different individual models to investigate their performances in quantifying 
the uncertainty in forecast for unconventional plays; their objective was to identify a single best model for 
probabilistic DCA.  

Instead of to regard any model as a 
potentially good model and its goodness is described by a probability representation. If a model has larger 
probability of being better than the others, we say that this model is more likely to be a good model. If several 
models have close probabilities, we say that the uncertainty in the models is large because it is difficult to tell which 
model is more likely to be a good model. In this manner, the model uncertainty3 can be easily integrated in 
probabilistic decline curve analysis. 

An analogy to our proposal is the aggregation of forecasts from diverse experts. Such a forecast is a probability 
distribution of an uncertain quantity given subjectively or modeled by an expert. Thus, a decline curve model can be 
analogized to an expert. The topic of aggregating forecasts has been furthered significantly over the past decades in 
other fields (e.g., risk analysis and operational research). More than 40 years ago, Bunn (1975) reasoned as follows: 

to use by attempting to aggregate together all the information which each forecasting model embodies. In selecting 
those models which are rejected. 

 
Clemen and Winkler (1999) provided a comprehensive review on the aggregation approaches ranging from 

simple linear aggregation approach (e.g., Stone 1961) to complex copula approach (e.g., Jouini and Clemen 1996) 
which uses a copula function to include the depe Some of their conclusions, 
that gives ;
(2) in general, simple combination approaches perform quite well;  

; and (4) rather than finding a single, all-purpose 
aggregation approach, an approach should be designed based on the details of each individual situation. 

Bunn (1975) quantified the weights in a linear aggregation approach using the probability of a model 
outperforming the other models. Although his interpretation of probability is different from ours, he used Bayesian 
theorem to update probabilities based on historical data, which is similar to what we do. Dillon et al. (2002) 
presented a Monte Carlo based approach to aggregate forecasts. They assigned each individual forecast the same 
weight. We use the same Monte Carlo based approach but assign each individual forecast different weight which is 
quantified by the probability. 

In the remainder of the paper, we first briefly review four decline curve models. We then introduce an approach 
to assess the model probabilities which can be used for probabilistic decline curve analysis. An example with 
synthetic data is used to illustrate the importance of considering the model uncertainty, followed by an application of 
our proposed approach with real data from two unconventional fields. Finally, we present our conclusions. 

The main contributions of this work are (1) using probability to describe the goodness of a model, (2) an 
approach to integrate the model uncertainty in probabilistic decline curve analysis, (3) illustration and discussion of 
the impact of the model uncertainty, and (4) illustration of the use of our proposed approach in a real case. 

 
Decline Curve Models 
One of the most popular models for decline curve analysis is the 
application, it has been realized that it may not be ideal for unconventional plays. Thus, several models were 
developed for analysis of unconventional plays. For example, the power law exponential model (Ilk et al. 2008), the 
                                                           
2 In decline curve analysis, the data fluctuations caused by changes in operating conditions are treated as caused by measurement 
errors (Jochen and Spivey 1996). 
3 a phenomena. For a given model, its 

n be 
uncertain about which mathematical formulation (i.e. which model) should be used to describe the physics of a phenomena. This 
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streched exponential model (Valko 2009), Duong (2011) model, the logistic growth model (Clark et al. 2011) and 
Pan (2016) capacitance-resistance model (CRM). In this work, we focus on four of them: the Arps model, the 
stretched exponential model (SEM), the logistic growth model (LGM) and the Pan CRM. 

Arps Model. It is an empirical model formulated as 
 

  (1) 

 
where  is the rate at time ,  is the initial rate at ,  is the initial decline rate and  is the decline 
exponent. With the assumption of boundary-dominated flow, the upper bound of  is 1. For the transient flow 
regime of unconventional production,  is often greater than 1 (Valko and Lee, 2010) and as a result the cumulative 
production is unbounded. To avoid unbounded cumulative production, we use the range from 0 to 1 for . 

Stretched Exponential Model. Based on the analysis of the Barnett shale wells, Valko (2009) presented the 
SEM to formulate an empirical time-rate relation 

 
  (2) 
 
where  is the characteristic time parameter and  is the exponent parameter. Valko and Lee (2010) interpreted the 
SEM as: the actual production decline is an integrated effect of multiple contributing volumes each in its individual 
exponential decay with a specific distribution of characteristic time constants. The distribution can be determined by 

 and  is the median of the characteristic time constants and  describes the fatness of the tail of the 
distribution. 

Logistic Growth Model. The LGM is an empirical model originally developed for modeling population growth. 
It describes the limit of a biological population growth. Hubbert (1956) adopted this model to model production for 
entire fields or producing regions. Recently, Clark et al. (2011) applied it to model production in a single 
unconventional well. The specific formulation of the LGM used by them is 
 

  (3) 

 
where  is a constant,  is the carrying capacity and  is the hyperbolic exponent parameter. The value of the 
carrying capacity  represents the total amount of hydrocarbon that can be recovered under the primary recovery 
mechanism in a producer. The hyperbolic exponent parameter  controls the decline behavior the larger the 
parameter value is, the slower the decline is. The constant  and t  together 
determine the time when half of the carrying capacity  has been produced, i.e., the cumulative production at 

, is  
Pan CRM. Pan (2016) proposed a model to capture the productivity index behavior over both linear transient 

and boundary-dominated flow, 
 

  (4) 

 
where  is the productivity,  is the linear transient flow parameter and  is the constant productivity index that a 
well will eventually reach.  is related to the permeability in the analytical solution of linear flow into fractured 
wells presented by Wattenbarger et al. (1998). By combining Eq. 4 and a tank material balance equation, Pan (2016) 
derived the analytical solution of rate over time 
 

  (5) 

 
where  is the difference between the initial reservoir pressure and the assumed constant flowing bottom hole 
pressure,  is the total compressibility and  is the drainage pore volume. The Pan CRM may give unrealistically 
large rate for small , as  approaches infinity when  approaches 0. To deal with this issue, we use this model for 
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production after 10 days (i.e. ).  The Pan CRM is the only one of the four that is derived analytically and has 
physical parameters in it. 
 
Determination of Model Parameters 
For a given model, its parameters are determined through history matching with the goal to minimize a predefined 
loss function by adjusting the model parameters. 

Deterministic Approach. In a deterministic approach, a model and its parameter values that best fit the data is 
found and used for forecasting. The best-fit model gives a single estimate of our interest (e.g., future production). A 
widely used approach is the least squares estimation (LSE) with the aim to minimize the difference between model 
forecast and data. Thus, the loss function of LSE is defined as 

 

  (6) 

 
where  is the loss function of LSE which is a function of the vector of model parameters ,  is the 
model forecasted rate at time step ,  is the measured rate (i.e., data) at time step  and  is the total number of 
time steps of data.  

Another approach is the maximum likelihood estimation (MLE). It aims to maximize the likelihood function 
(i.e., the probability of observing the data given a model). Assuming the data measurements are independent, the 
likelihood function is 
 

  (7) 

 
where  denotes probability. Further assuming the measurement of  has a Gaussian random error with zero mean 
and standard deviation , we have 
 

  (8) 

 
Thus,  

 

  (9) 

 
Maximizing the likelihood function (Eq. 9) is equivalent to minimizing  
 

  (10) 

 
It can be seen that if , Eq. 10 can be reduced to Eq. 6. Therefore, LSE is a special case of MLE. 
The advantage of using Eq. 10 instead of Eq. 6 is that  acts as a weighting factor so that a more accurate data point 
(i.e., with small ) will have more weight than a less accurate data point (i.e., with large ).  

A practical issue of using MLE is that we must assess , which we seldom know a priori. To approximately 
estimate , we suggest using the moving window approach. For example, if we want to assess , we first assign a 
value to the half window width , then take a subset of data , and then calculate 
the sample standard deviation of this subset of data which is treated as . In this way, a data point in a period with 
sharp changes or large fluctuations will have large . This makes sense for DCA because sharp changes (usually 
sharp drops) in rate normally happens in the early time where the data is less reliable and when a subset of data with 
large fluctuations is less important for history matching and should be assigned less weight. To our knowledge, there 
is no strict rule for the determination of the optimal window width. Many empirical rules relate the window width to 
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the number of data pints. However, to find a rule for the optimal window width is outside the scope of this paper. 
Based on our practice, we use a half window width of 10 data points. 

Probabilistic Approach. Instead of estimating a single value of our interest, a probabilistic approach focuses on 
assessing a distribution or a range (e.g., the 80% confidence interval) of our interest with the consideration of 
uncertainties in measurements, inverse modelling4 and model type. The latter will be detailed in the next section. 

Jochen and Spivey (1996) illustrated the use of the bootstrap method combined with DCA to give a probabilistic 
reserves estimation. The bootstrap method assumes a noninformative prior, so it does not require a priori knowledge 
on the distribution of model parameters. Because of unknown measurement errors, the bootstrap method includes 
uncertainties in measurements by using the Monte Carlo method to resample datasets from the original dataset with 
replacement. For each resampled dataset, the model parameters are determined using LSE. As it repeats for 
numerous resampled datasets, the posterior distributions5 of model parameters can be obtained. 

Tavassoli et al. (2004) presented the issue of non-uniqueness in inverse modelling (inherent uncertainty in 
history matching) and showed that different combinations of model parameters may give almost equally good 
history matching result but give different forecasts. Sayarpour et al. (2011) started with different sets of initial 
guesses of model parameters to history match data to generate numerous history matched solutions of model 
parameters. 

To allow for the uncertainties in both measurements and inverse modeling, we start with different sets of initial 
guesses of model parameters when history matching each resampled dataset. 
 
Integrating Model Uncertainty in Probabilistic Decline Curve Analysis 

The approaches presented in the previous section assume that a single model, which predicts reservoir 
performance, has been proposed. None of the reviewed publications discussed a systematic approach of determining 
which decline curve model is the best for unconventional plays. Moreover, in some cases, it is not easy to select a 
best model because satisfactory history matching resutls can be produced by several different models. Instead of 
determining a best model, we propose to include the model uncertainty in the probabilistic approach by assessing the 
probability of each model considered. 

This section illustrates our proposed approach to integrate model uncertainty in probabilistic DCA. We name this 
approach the multiple-model probabilistic MLE (MM-P-MLE) approach because it considers multiple models and 
applies probabilistic DCA with MLE for data matching. More particularly, in the following, we use single-model 
probabilistic MLE (SM-P-MLE) to refer to the circumstance where probabilistic DCA with MLE is applied for a 

model, and single-model deterministic MLE (SM-D-MLE) to the circumstance where deterministic 
DCA with MLE is applied . 

The procedure of performing MM-P-MLE is described as follows. We assume the measurement of rate  has a 
Gaussian random error with zero mean and standard deviation , and use the moving window approach to 
approximately estimate . Similar to the bootstrap method, numerous datasets are sampled. However, since the 
standard deviation of measurement error has been assessed, we can use the Monte Carlo method to sample from a 
Gaussian distribution with mean  and standard deviation  for each data point. For a given sampled dataset, we 
use MLE to determine the parameters of each model considered. Then, we use Bay theorem to calculate the 
probability of each model with its parameters of MLE solution given the sampled dataset: 

 

  (11) 

 
where  is the parameters of MLE solution given model  and sampled dataset ;  denotes a priori 
knowledge; and  denotes a posteriori knowledge. Using a noninformative prior distribution, we have 

, so Eq. 9 is reduced to 
 

  (12) 

                                                           
4 -
multiple combinations of model parameter values may give equally good match to data. 
5 
given additional information.   
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Insert Eqs. 9 and 10 into Eq. 12, we get 
 

  (13) 

 
The probability calculated using Eq. 13 is the probability of the estimate of our interest forecasted by model  with 
its parameters  given a sampled dataset . Because  is an independent Monte Carlo sample,  
and 
 

  (14) 

 
where  is the total number of Monte Carlo samples (  in the following applications). The probability 
calculated using Eq. 14 is regarded as the weight given to the estimate forecasted by model  with its parameters 

. By repeating this process over the models and the sampled datasets, we obtain a set of weighted samples of 
the estimate as shown in Table 1 where  is the total number of models considered,  is the estimate forecasted 
using  and , and  denots . This set of weighted samples represents the distribution of 
the estimate with the integration of model uncertainty. The marginal posterior probability of a model regardless of 
any sampled dataset is calculated as  
 

  (15) 

 
We interpret this probability as a measure of the relative truthfulness of model  to the other models. 
 

Estimate forecasted using  and            
Weight assigned to the estimate           

 
Table 1 Set of weighted samples of estimate. 

 
Illustrative Example with Synthetic Data 
This section uses a synthetic dataset to illustrate the impacts of using the deterministic and probabilistic approaches 
without considering the model uncertainty (i.e. SM-D-MLE and SM-P-MLE) on cumulative oil production 
estimation, and to highlight the importance of using our proposed approach (MM-P-MLE). We consider only the 
Arps model, SEM and Pan CRM for this example, but more models can be easily included in our approach as we 
will include the LGM for the analyses with actual field data. 

The decline is generated using the Pan CRM. Random errors, drawn from Gaussian distributions with 
zero mean and standard deviation equal to 20% of true rate, decline to form the synthetic 
dataset. Fig. 1 illustrates the synthetic dataset and the  decline of oil production rate as well as the standard 
deviation of measurement error assessed using the moving window approach with a half window size of 10. Our 
interest is the cumulative oil production from the time of the last data point to day 10950 (year 30
cumulative oil production given by the Pan CRM is 48.1 Mbbl. This value is used as a reference for subsequent 
estimates.  
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Fig. 1 Synthetic dataset to day 200. 
 
We first use SM-D-MLE to estimate the cumulative oil production. The resulting best-fit parameters and 

corresponding loss function value of MLE for each model is listed in Table 2. We see that Arps model with 
,  and  best fits the data (minimal loss function). Therefore, it is used for 

forecasting, providing an estimated cumulative oil production of 132.6 Mbbl. This estimate is more than 2.5 times 
. 

 
Arps Model SEM Pan CRM 

 [bbl/day] 1121.6  [bbl/day] 1519.8  [psi] 507.8 
 [-] 0.75  [day] 56.5  [bbl/day/psi] 1.16 

 [day-1] 0.016  [-] 0.53  [bbl/psi] 283.7 
     [bbl/day1/2/psi] 4.2 

 171.65  171.75  172.29 
 

Table 2 Best-fit parameters for the Arps, SEM and Pan CRM models for the synthetic dataset to day 200. 
 
To take the uncertainties in measurements and inverse modeling into consideration, we use SM-P-MLE with the 

Arps model. This produces a distribution of the cumulative oil production, whose P10, P50, mean and P90 are listed 
in Table 3. The forecast of the Arps model is biased, , and the 80% confidence 
interval (from P10 to P90) does not contain it. 

 
Statistics P10 P50 Mean P90 

Cumulative Oil 
Production [Mbbl] 73.5 132.3 135.7 207.2 

 
Table 3 Statistics of the cumulative oil production forecasted by the Arps model given the synthetic dataset to day 200. 

 
We use MM-P-MLE to integrate the model uncertainty in this analysis. Indeed, the minimized loss function 

values of the three models are very close to each other, which means no model is superior to the others. The 
marginal posterior probabilities calculated using Eq. 15 are 36.4%, 34.0% and 29.6% for the Arps, SEM and Pan 
CRM models, respectively. The models are almost equally likely to be the correct model given the synthetic dataset. 
This result seems counter-  model (the Pan CRM) is the least likely one because the dataset 
does not show an obvious linear transient flow behavior that the Arps model may not capture. Thus, the model 
uncertainty remains large even when the dataset is given.  
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Figure 2 shows Box plots of cumulative oil production forecasted using SM-P-MLE solely with the Arps, SEM 
or Pan CRM models, and using MM-P-MLE. Among the three models, the Arps model has the largest uncertainty in 
inverse modeling as it gives the largest 80% confidence interval, while the Pan CRM model has the smallest 
uncertainty in inverse modeling. Since the Pan CRM is the one used to generate the data, the l, its 
estimate is the best. Using the proposed approach MM-P-MLE contained in the 80% confidence 
interval. This means that by integrating the model uncertainty in the analysis, we can reduce the risk of selecting a 
wrong model for forecasting when the correct model is unknown.  

 

 
Fig. 2 Box plots of cumulative oil production forecasted using a single model and compared to that of the 

proposed approach given the synthetic data to day 200. 
 
We extend the dataset to day 400 (Fig. 3) and use MM-P-MLE to estimate the cumulative oil production from 

day 400 to day 10950 (year 30). The dataset is in Fig. 3. The resulting marginal posterior probabilities are 14.2%, 
38.3% and 47.5% for the Arps, SEM and Pan CRM models, respectively. Given the additional data from day 200 to 
day 400, the Pan CRM becomes the most likely, whereas the Arps model is the least likely. This ranking given by 
the marginal posterior probabilities is consistent with the ranking given by the matching quality shown in Fig. 4, 
where each decline curve represents a MLE solution for a sampled dataset and a single model. Fig. 5 shows the Box 
plots of cumulative oil production forecasted using SM-P-MLE solely with the Arps, SEM or Pan CRM model, and 
using MM-P-MLE. Because the SEM and Pan CRM now have much larger probability than the Arps model, the 
distribution forecasted using MM-P-MLE is skewed toward the distributions forecasted solely by the SEM and Pan 
CRM with a tail toward that of the Arps model. When considering the Arps or SEM model individually, none of 
these models provides an 80% confidence interval containing the truth. However, when all these three models are 

the estimate is improved as the 80% confidence interval obtained 
using MM-P-MLE contains   

This example indicates that to include multiple models for forecasting reduces the risk of rejecting a good model 
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Fig. 3 Synthetic dataset to day 400. 
 

 
 

Fig. 4 Plots of the history matching results for the Arps, SEM and Pan CRM models. 
 

 
Fig. 5 Boxplots of cumulative oil production forecasted using solely one model and using the proposed approach 

given the synthetic data to day 400. 
 
Application to the Bakken Field Data 
Our proposed approach is applied to daily oil production rate data from the Bakken field. The Bakken wells that we 
study in this work are completed in a fractured shale reservoir. All the wells we select for this study are completed in 
the same formation. First, we conduct a hindcast test where the first part of a dataset is used for history matching and 
the second part is used for comparison with the model forecast. Finally, we use our proposed approach to forecast 
the cumulative oil production for selected wells.  
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Hindcast Test. The oil production rate data is from Bakken Well UT-ID 220 (Fig. 5). There are 660 data points 
in total, covering the period from day 10 to day 695.  The rates are measured daily.  We use the data from day 10 to 
day 100 for history matching, and then use the history-matched model for forecasting. In this test, we consider the 
Arps, SEM and Pan CRM models. The resulting marginal posterior probabilities are 14.9%, 37.4% and 47.7% for 
the Arps, SEM and Pan CRM models, respectively. Although the Pan CRM is the most likely model, we are not 
confident enough to say that Pan CRM is superior to the other two because its probability is only slightly larger than 
that of the others. Therefore, the possibilities of the Arps and SEM models should be included in the forecast using 
MM-P-MLE. The forecast from day 100 to day 695 compared with the corresponding data is shown in Fig. 6. We 
see that most of the data falls in the 80% confidence interval. 

 

 
 

Fig. 5 Data from Bakken Well UT-ID 220 from day 10 to day 695. 
 

 
 

Fig. 6 The forecast from day 100 to day 695 compared with the corresponding data from Bakken Well UT-ID 220. 
 
We use more data points to investigate how this will impact the forecast. Given data from day 10 to day 200, the 

probability of the Pan CRM increases from 47.7% (given data from day 10 to day 100) to 79.3%, the probability of 
the SEM drops to 20.7% and the probability of the Arps model drops to 0%. The forecast of oil production rate from 
day 200 to day 695 is in Fig. 7. The forecast matches the data better and its uncertainty is reduced. 
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Fig. 7 The forecast from day 200 to day 695 compared with the corresponding data from Bakken Well UT-ID 220. 
 
Model Probabilities and Cumulative Oil Production Estimates for Bakken Wells.  We select 28 Bakken 

wells with relatively less noisy data. The model probabilities and cumulative oil production are assessed for these 
wells. The wells have different operation times; some have a short period of data while some are long. The data 
length of each well is listed in Table 4. 

 
Well UT-ID 222 208 401 195 69 194 413 187 216 804 223 78 80 232 
Data Length 

[days] 213 223 233 260 292 309 336 337 372 377 392 434 499 515 

 
Well UT-ID 265 209 385 227 220 391 386 228 67 4 198 197 81 82 
Data Length 

[days] 531 533 546 707 740 769 886 993 1136 1241 1306 1377 1620 1642 

 
Table 4 Data length of selected Bakken wells. 

This analysis considers the Arps, SEM, LGM and Pan CRM models. The marginal posterior probabilities of the 
decline curve models are illustrated in Fig. 8. Among the 28 selected wells, the Pan CRM is most likely for 13 wells, 
the SEM for 7 wells, and each of the LGM and Arps models for only 4 wells. This confirms that the Arps model 
may not be ideal for unconventional plays, and indicates that the Pan CRM, as the only analytical model, is more 
likely to better describe the unconventional flow behavior than the empirical models. 

For the wells with short data length (smaller than 400 days), the model uncertainty is large and the probability of 
the Arps model is comparable to the other three models. As the data length increase, one of the models becomes 
dominating with a probability higher than 90%. However, for a few of the well with long data length, the uncertainty 
remains in the SEM, LGM and Pan CRM (for example, Wells UT-ID 228 and 197). Thus, using solely one of them 
for further analysis may underestimate the uncertainty even when there is a lot of data. 

We see two wells (Wells UT-ID 187 and 227) with the Arps model dominating. The reason may be that the data 
is so noisy that it masks the decline features of this unconventional oil or that the fracture flow is indeed not 
dominating in that well. Additional and less noisy data is required for these wells. 
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Fig. 8 The marginal posterior probabilities of the decline curve models for the 28 selected Bakken wells. 

 
Considering  are interested in how much oil is left in each well (i.e., the 

cumulative oil production from the last day with data to day 10950). The mean value or expected value of the 
cumulative oil production for each of the selected Bakken wells is in Fig. 9. The figure includes the mean values 
estimated using solely one of the models and using our proposed approach. The Box plot of the estimated 
cumulative oil production using MM-P-MLE is in Fig. 10. In the Box plot, all the values are normalized by the 
mean value estimated using MM-P-MLE for each well. 

From Fig. 9, we see that the LGM and Arps models gives a higher estimate of the mean value of the cumulative 
oil production than the other two models for most of the wells with short data length. This means that using the 
LGM or Aprs models solely with short data length may give an optimistic estimate in cumulative oil production. 

 lowest mean values 
estimated using the models individually, 8 wells hits the highest mean values estimated using the models 
individually, and 5 wells hits the lowest mean values estimated using the models individually. Thus, using the 
proposed approach to take the model certainty into account will give a result that is neither too optimistic nor too 
pessimistic.  

In Fig. 10, for most of the wells with short data length, the uncertainty in estimated cumulative oil production is 
large with wide 80% confidence interval, whereas for most of the wells with long data length, the uncertainty is 
significantly smaller. It is because the uncertainty in the estimated cumulative oil production is large as the model 
uncertainty is large. Well UT-ID 197 has wide 80% confidence interval even it has long data length because of the 
uncertainty in the SEM, LGM and Pan CRM models. Well UT-ID 385 has an extremely skewed distribution. This is 
because the Pan CRM forecasts low cumulative oil production with small SD while the LGM forecasts much larger 
value with large SD; when 63.4% weight is given to the Pan CRM and 33.6% to the LGM, the resulting distribution 
skews towards the  the LGM  
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Fig. 9 Mean values of estimated cumulative oil production for the 28 selected Bakken wells. 

 

 
Fig. 10 Box plots of estimated cumulative oil production using MM-P-MLE for the 28 selected Bakken wells. 

 
Application to the Midland Field Data 
We perform the same analysis for the Midland field, as we did for the Bakken field. The Midland wells that we 
study in this work are completed in a fractured reservoir. Unlike the daily oil production data from the Bakken field, 
the Midland field data is monthly. Thus, the Midland field data is smoother than the Bakken field data. We select 31 
Midland wells with relatively less noisy data. Each well has been operated under different lengths of time. Table 5 
lists the length of data for each selected well. 
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Well ID 28 24 47 9 22 11 14 48 25 15 29 32 42 27 39 45 
Data Length 

[months] 62 68 71 72 75 76 76 76 77 78 78 78 78 80 81 82 

 
Well ID 43 49 26 13 31 33 34 40 41 44 17 18 19 30 16 

Data Length 
[months] 83 83 84 85 86 86 87 89 93 94 97 97 97 97 104 

 
Table 5 Data length of selected Midland wells. 

 
Figure 11 illustrates the marginal posterior probabilities, calculated using MM-P-MLE, for the Arps, SEM, LGM 
and Pan CRM models. Among the 31 selected Midland wells, the Pan CRM is most likely for 18 wells, the Arps 
model for 8 wells, the SEM for only 3 wells, and the LGM for only 2 wells. This indicates that, in general, the Pan 
CRM has higher chance to be a good model for describing the Midland field data than the other three models. 
Nevertheless, no one model is best for all wells. For some wells, the Pan CRM can be the least likely model. 
Moreover, even if the Pan CRM is the most likely one, some other models may have probabilities close to that of the 
Pan CRM; for example, the marginal posterior probabilities for Well 14 are 35.2% for the Pan CRM, 27.7% for the 
SEM and 25.4% for the LGM. 
 

 
Fig. 11 The marginal posterior probabilities of the decline curve models for the 31 selected Midland wells. 

 
Figure 12 illustrates the mean values of estimated cumulative oil production from the last data point to year 30 
using SM-P-MLE with the Arps, SEM, LGM or Pan CRM model solely, and MM-P-MLE with the consideration of 
all these four models. When we consider these models individually, the LGM tends to give the highest estimate 
while the Pan CRM tends to give the lowest estimate for most of the wells. Although the Arps model does not tend 
to give an estimate as high as the LGM, it tends to give an estimate higher than the SEM and Pan CRM. Our 
proposed approach MM-P-MLE weights each individual model and gives a moderate estimate. 
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Fig. 12 Mean values of estimated cumulative oil production for the 31 selected Bakken wells. 

 
Figure 13 illustrates the Box plots of estimated cumulative oil production using MM-P-MLE for the 31 selected 
Midland wells. All the values are normalized by the estimated mean for each well. For most of the wells, the 80% 
confidence interval is between 0.5 and 1.5 times the mean value. Compared to the Bakken wells, the uncertainties in 
the forecasts 
daily production data contains more data points than Midland w
points increases, less uncertainty in measurement propagates to the uncertainty in forecast. 
 

 
Fig. 13 Box plots of estimated cumulative oil production using MM-P-MLE for the 31 selected Midland wells. 
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Discussion 
Ambiguous choice of a single model for DCA can be caused by cognitive biases6. Overconfidence is one of the most 
common cognitive biases in the oil and gas industry (Welsh et al., 2005). When a single model is selected for DCA, 
one gives a 100% weight to this selected model (i.e., trust this model 100%). However, it is obvious that a single 
model should not be trust 100%. Thus, he/she is overconfident in the selected model. When diverse models are 
considered, the impact of overconfidence is reduced. Our proposed approach MM-P-MLE provides a consistent and 
systematic framework for including multiple models in probabilities DCA and updating the model 
probabilities/weights based on given data. Therefore, the risk of over/underestimate given by a single model is 
reduced and MM-P-MLE gives a moderate estimate. 

Traditional measures of the goodness of fit (weighted) sum of squares and (weighted) can only be used to 
rank different models but they do not have any useful interpretation for probabilistic analysis. It is more useful for 
probability analysis to convert them into corresponding probability representation. Moreover, probability has a more 
intuitive interpretation to many people than sum of squares and . 

The Pan CRM is the most likely model for most of the unconventional wells selected for this work. It tends to 
give the lowest estimate on cumulative oil production over long time among the four models studies in this work. 
This means that it is very likely that the true cumulative oil production is lower than the forecast by the other models 

ate on future oil 
production has often turned out to be too optimistic. 

However, no one model is best in all circumstances, as for some wells, the Arps, SEM or LGM models may 
performs better than the others. MM-P-MLE avoids the a priori choice of which model to use and the rejection of a 
possible good model. Thus, we are open-minded to other models and weights them according to their quality of data 
match. Any model holds the possibility to  when the data provides enough evidence as more data 
becomes available. 

When the number of data points is small, the model uncertainty remains large, because these data points do not 
clearly reflect the characteristics of different flow regimes of unconventional production. As the number of data 
points increases, the characteristics of different flow regimes is shown more clearly, and the model that cannot well 
capture the physics of all the flow regimes will be gradually eliminated (i.e., its probability approaches 0). 

The Pan CRM is the only analytical model among the models we consider in this work. It is designed to capture 
the major flow regimes transient flow regime and semi-steady state flow regime involved in an unconventional 
well. Therefore, it is not surprising that the data from two unconventional fields show that the Pan CRM is the most 
likely one to well describe the flow behaviors, among the four models. Some wells show that one of the other three 
models is the most likely for some possible reasons: the measure errors masks the characteristics of different flow 
regimes, different flow regimes show up simultaneously, minor flow regimes appears, fracture flow is not 
dominating, or unclear flow behaviors appear. Besides, unlike that the parameters of an empirical model have no 
physical meaning, all the parameters of the Pan CRM are physically defined, and the fit parameter values reveal 
important reservoir/well properties. For example, the  in the Pan CRM reveals the effective drainage volume of a 
producer. 

Our investigation is limited to the Arps, SEM, LGM and Pan CRM models. More models should be included in 
this analysis. Other models (e.g., a dual-porosity reservoir simulation model) might be superior to the Pan CRM. 
However, we argue that using a more complex model with more parameters can make probabilistic analysis too 
computationally intensive and may not create much additional value (see the discussion in Bratvold and Begg 
(2009) and Hong et al. (2017)). One of the advantage of DCA is its speed. Thus, we prefer models with small 
number of parameters for DCA. 
 
Conclusions 
We propose an approach, MM-P-MLE, that integrates model uncertainty in probabilistic DCA for unconventional 
oil production forecasting. Different from the approach that uses only a single best-fit model for further analysis, the 
proposed approach interprets the goodness of fit of a model with a probability representation that can be carried to 
uncertainty analysis. The uncertainty in the Arps ( ), SEM and Pan CRM models for analyzing 
unconventional plays was investigated. 

An example illustrated that the best-fit model may not be the model that best fits the flow behavior. Using the 
proposed approach can reduce the risk of using a best-fit but very wrong model for forecasting. 

The proposed approach was applied with real oil production data from the Bakken and Midland fields. The 
hindcast test showed that the model uncertainty was reduced and the forecast was improved as more data points 
                                                           
6 A cognitive bias refers to the unconscious deviation from rationality in judgment (Haselton et al., 2005). 
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became available. The model probabilities were assessed and the cumulative oil productions were estimated using 
our proposed approach for 28 selected Bakken wells and 31 selected Midland wells. The proposed approach 
performed well in propagating the model uncertainty to the uncertainty in forecast. The results showed that: 

 It is confirmed that the Arps model ( ) may not be ideal for unconventional plays. 
 The Pan CRM, as the only analytical model, is more likely to better describe the unconventional flow 

behavior than the other three empirical models. 
 No one model is the most likely for all wells. 
 The model uncertainty can remain large even when the data length is long. 
 The Arps and LGM models tends to give a larger estimate of the expected value of the cumulative oil 

production than the other two models for the wells with small number of data points. Using the Aprs or 
LGM model with small number of data points may result in a too optimistic estimate in cumulative oil 
production. 

 By weighting the models, the proposed approach gives a moderate estimate of the cumulative oil 
production; neither too optimistic or too pessimistic. 
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Abstract Many model-based techniques for optimizing
hydrocarbon production, especially robust optimization
(RO), carry prohibitive computational cost. Ensemble-based
optimization (EnOpt) is a promising RO method but is
computationally intensive when based on rich grid-based
reservoir models with hundreds of realizations. We present
a proxy-model workflow where a grid-based model is
supplemented by a useful yet tractable proxy model. A
capacitance-resistance model (CRM) can be a proxy model
for waterflooding systems. We illustrate the use of CRM-
based models and investigate their pros and cons using
synthetic 2D and 3D models. A selected proxy model
is embedded into the proxy-model workflow. The results
obtained from the proxy-model and traditional workflows
are compared. The impact of any differences is assessed
by considering a relevant decision-making context. The
main contributions are (1) a general RO workflow that
embeds proxy models, (2) a discussion of the desiderata
of proxy models, (3) illustration and discussion of the use
of CRM-based models in the proxy-model workflow, and
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(4) a discussion of the impact of using a proxy model
for production optimization in a decision-making context.
Based on our study, we conclude that CRM-based mod-
els have high potential to serve as a cogent proxy model
for waterflooding related decision-making context and that
the proxy-model workflow, leveraging a faster, but relevant,
production model, significantly speeds up the optimization
yet gives robust results that leads to a near-optimal solution.

Keywords Model-based hydrocarbon production
optimization · Geological uncertainty · Robust production
optimization · Ensemble-based optimization ·
Computational cost · Grid-based reservoir model ·
Capacitance-resistance model · Proxy model · Water
injection · Decision-making · Value of verisimilitude

1 Introduction

The past few decades have seen rapid development in
numerical techniques for model-based optimization of sub-
surface hydrocarbon production (to optimize the reserves,
the production over some time frame, the value of the
reserves or production, etc.). However, these techniques
typically require computation for a numerous reservoir sim-
ulations, especially for robust optimization (RO).

Within RO, the geological uncertainties are represented
by a set of realizations (i.e., an ensemble). The objective of
RO is to find a control vector (e.g., a water injection scheme)
that optimizes the expected value (EV) of the objective
function, such as net present value (NPV), given the geolog-
ical uncertainties represented by the realizations. Hence, the
optimal solution is robust to geological uncertainties. van
Essen et al. [33] used RO to optimize hydrocarbon produc-
tion under geological uncertainty, where an adjoint-based
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method is used for obtaining the gradient information. The
adjoint-based method requires access to the source code
of the reservoir simulator, which is seldom available for
commercial simulators, and it is computationally intensive.

Chen et al. [13] introduced the ensemble-based optimiza-
tion method (EnOpt), in which the gradient is approximated
by the covariance between the objective function values
and the control variables. Regardless of the type of reser-
voir simulators, EnOpt is easier to implement than other RO
methods and is less computationally intensive [17]. Do and
Reynolds [15] analyzed the theoretical connections between
EnOpt and other approximate gradient-based optimization
methods. Having realized that it is unnecessary to approxi-
mate the ensemble mean to the sample mean as was done by
Chen et al. [13], Do and Reynolds [15] used the ensemble
mean in their EnOpt formulation.

Fonseca et al. [17] further modified Do and Reynolds’s
[15] EnOpt formulation and found that the modified EnOpt
formulation1 both gives a better objective function value and
converges more quickly than the original EnOpt and other
variants of ensemble-based optimization method. Although
it has been demonstrated that EnOpt (both the original
formulation and its variants) is a vast improvement over
earlier optimization methods, it is nonetheless computation-
ally intensive, typically involving thousands of reservoir
simulations [29]. The differences between the original and
modified EnOpt formulations will be stated in detail in
Section 3.

Yang et al. [35] used a second order polynomial proxy
model to reduce the number of required simulations in
RO. Denney [14] discussed the pros and cons of applying
a proxy model as a substitute for full reservoir simula-
tions in assisted history matching, production optimization
and prediction, and found that proxy models do not give
an optimal solution in many cases but are less compu-
tationally demanding in finding improved solutions. Our
paper presents an alternative, and general, workflow where
a grid-based reservoir model is supplemented by a material-
balance-based proxy model for RO. This proxy model is
intended to capture the range of possible production pro-
files, yet be less computationally intensive than the reser-
voir simulators currently used in EnOpt. Thus, the choice
and usefulness of a proxy model for this purpose will
be a function of the reservoir characteristics and drainage
scheme. Our main focus is waterflooding systems for which
capacitance-resistance model (CRM) is a potential candidate.

Bruce [9] applied the analogy of a capacitance-resistance
electric network to analyzing reservoir and well behavior.
Albertoni and Lake [1] introduced a model that combined

1We refer the EnOpt formulation modified by Fonseca et al. [17] to as
the modified EnOpt formation in the rest of the paper.

a multivariate linear regression analysis with diffusivity fil-
ters and used only production and injection rate data to
investigate the connectivity and response time between a
producer and an injector in a waterflooded reservoir. Gentil
[18] showed that the connectivity is a function of transmis-
sibilities. Yousef et al. [36] introduced CRM by modifying
Albertoni and Lake’s work [1] to use the weight to quan-
tify the connectivity and to employ the time constant to
quantify the fluid storage within each injector-producer pair.
Sayarpour [27] used superposition in time to analytically
solve the numerical integration in CRM.

To overcome the original CRM’s limitation that the total
fluid flow is treated as a single phase, a CRM was combined
by Sayarpour et al. [28] with a Buckley-Leverett-based
fractional flow model, by Gentil [18] with an empirical
fractional flow equation, and by Cao et al. [12] with the
Koval [22] model. Cao [10] demonstrated that the Koval
model might not yield a good match for mature waterfloods
because it might approach an abrupt end of 100% water cut.
She also noted that the Gentil model might not work well for
immature waterfloods because the relationship between the
natural logs of water-oil ratio and cumulative water injection
might be non-linear at that stage. These concerns prompted
the development of a fully coupled two-phase-flow-based
CRM, which is applicable in all stages of maturity [10, 11].

To allow for the inherent uncertainty in history match-
ing [31], Sayarpour et al. [28] started with different sets
of initial guesses of unknown CRM parameters and used
production data to generate numerous history-matched solu-
tions of CRM. Jafroodi and Zhang [21] applied a CRM
in a closed loop consisting of ensemble Kalman filter
(EnKF) and EnOpt to capture the geological uncertainties
and the time-variance of the CRM parameters. CRM has
been shown to be quite accurate for waterflooding systems
and used as a tool for waterflood production optimization
[24, 30].

The above studies on CRM employed it in the production
phase with real production data (in the synthetic studies, the
“real” production data is mimicked by the synthetic model
simulated production data). In the proxy-model workflow,
we do not need any real production data for using CRM
because the CRM is history-matched to grid-based model
simulated production data (i.e., pseudo production data).
Thus, the proxy-model workflow can be used when real
production data is unavailable (e.g., in the design phase).

In Section 2, we review two CRM-based models, a CRM
combined with the Koval model (the CRMP-Koval Model)
and the fully coupled two-phase flow based CRM (the Cou-
pled CRMP). Section 3 gives a short introduction on RO and
EnOpt. Section 4 illustrates the proxy-model workflow. In
Sections 5 and 6, this workflow is tested in two examples;
one with a 2D reservoir simulation model and the other with
a 3D model. The matching qualities of the two CRM-based
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models are compared for screening purposes in the 2D
model example. The selected proxy model is embedded into
the proxy-model workflow. The results of the proxy-model
and traditional workflows are contrasted and discussed. Fur-
thermore, the impacts of these results are investigated in a
decision-making context. Finally, we present a discussion
and conclusions in Sections 7 and 8, respectively.

The main contributions of this work are (1) a general RO
workflow embedding proxy models, (2) a discussion of the
desiderata of proxy models for production optimization, (3)
illustration and discussion of the use of CRM-based models
in the proxy-model workflow, and (4) a discussion of the
impact of using a proxy model for production optimization
in a decision-making context.

2 Capacitance-resistance model

A capacitance-resistance model (CRM) is based on mate-
rial balance and derived from total fluid continuity equation.
It contains considerably fewer parameters and needs sig-
nificantly less computation time than does a grid-based
reservoir model. Required input data for a CRM are pro-
duction rates, injection rates, and producers’ Bottom-Hole
Pressures (BHP). The two main parameters of a CRM are
connectivity and time constant. For an oil-water system,
connectivity is the proportion of injected water in an injector
that contributes to the total fluid production in a producer.
The time constant indicates how long a pressure wave from
an injector takes to reach a producer.

Based on control volume, CRM can be divided into
three categories: single-tank CRM (CRMT), producer-
based CRM (CRMP), and injector-producer-pair-based
CRM (CRMIP) [30]. As illustrated in Fig. 1, the control
volume in a CRMT is the entire drainage volume of a reser-
voir covering a single pseudo-producer (encompassing all
physical producers) and a single pseudo-injector (encom-
passing all physical injectors), enabling the entire reservoir
to be treated as a single tank with one inlet and one out-
let. A CRMP has producer-based control volumes, each of
which covers all the injectors influencing its correspond-
ing producer. A CRMIP has one control volume for each
injector-producer pair. Because the original CRM [36] can
predict only total fluid production, it must be combined with
a fractional flow model in order to separate oil production
from the total production. In the following, we review two
CRMP-based models for the case of an oil-water system
under waterflooding and constant producer BHPs.

2.1 The CRMP-Koval Model

The Koval factor [22] was introduced into the Buckley-
Leverett fractional flow equation in order to capture the

fingering effect induced by heterogeneity and the unfavor-
able mobility ratio between the displacing and displaced
fluids. Cao et al. [12] illustrated how CRMP combined
with the Koval fractional flow equation (the CRMP-Koval
Model) can be used to forecast oil and water production
under waterflooding. For constant producer BHPs, the total
fluid production equation of CRMP is [27]

qt
k
j = qt

k−1
j e−�tk/τj + (1 − e−�tk/τj )(

ninj∑
i=1

λij I
k
i ), (1)

where sub/superscripts i, j , and k are the indices of injector,
producer, and time step, respectively; qt

k
j is the total fluid

production rate of producer j at time k; �tk is the time step
length between times k and k − 1; τj is the time constant
for producer j ; ninj is the number of injectors; λij is the
connectivity between injector i and producer j ; and I k

i is the
water injection rate of injector i during the period of �tk .
Both λ and τ are assumed to be constant with respect to time
[12].2

Cao et al. [12] used the following form of the Koval
fractional flow equation:

fw
k
j =

⎧⎪⎪⎨⎪⎪⎩
0, if tDj < 1

Kvalj

Kval j −√
Kvalj /tDj

Kval j −1 , if 1
Kvalj

≤ tDj ≤ Kvalj

1, if tDj > Kvalj

, (2)

where

tDj =
∑nT

k=1 It
k
j

Vpj

, (3)

fw
k
j is the water cut in producer j at time k, Kvalj is the

Koval factor of producer j , tDj is the dimensionless time or
the fraction of cumulative water injected into the drainage
pore volume of producer j , nT is the number of time steps,
It

k
j is the total water injection contribution from all injectors

to producer j during �tk , and Vpj
is the drainage pore vol-

ume of producer j . Assuming that the water injection rate
of an injector is constant over �tk and equal to I k

i , It
k
j can

be calculated by

It
k
j = (

ni∑
i=1

λij I
k
i )�tk. (4)

Thus, using the CRMP and the Koval fractional flow equa-
tion, the water and oil production rates in producer j at time
k (qw

k
j and qo

k
j ) are calculated, respectively, by

qw
k
j = qt

k
j fw

k
j , (5)

qo
k
j = qt

k
j (1 − fw

k
j ). (6)

2This is equivalent to assuming no dramatic changes in reservoir or
well conditions.
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Fig. 1 Illustration of a CRMT,
b CRMP, and c CRMIP

In the CRMP-Koval Model, the model parameters are the
connectivity λ of each injector-producer pair; and the time
constant τ , the Koval factor Kval , and the drainage pore vol-
ume Vp of each producer. These parameters are determined
by solving the least squares problem

min
τj ,λij ,Kval j ,Vpj

z =
nT∑
k=1

np∑
j=1

[(qt
k
j −qt

k
j

obs
)2+(qo

k
j −qo

k
j

obs
)2]

(P1)

subject to

τj ≥ 0, (P1C1)

λij ≥ 0, (P1C2)

Kvalj ≥ 1, (P1C3)

np∑
j=1

Vpj
≤ VpField

, (P1C4)

np∑
j=1

λij

{
< 1, if injection loss exists
= 1, if no injection loss

(P1C5)

where the superscript obs denotes the observed production
data, np is the number of producers, and VpField

is the
total pore volume of the field. For an optimization program,
a different equation numbering system is used, where “P”
denotes a program and “C” denotes a constraint. For exam-
ple, Eq. P1C5 means constraint number 5 for optimization
program 1. For the case with aquifer support, Izgec and
Kabir [20] proposed coupling an aquifer model with a CRM.
Because no aquifer is considered in the reservoir models
used in the following examples, the effect of an aquifer
will not be considered in this paper. The total pore volume
of the field VpField

is defined by the total pore volume of
the reservoir simulation model because in the proxy-model
workflow, the observed production data are obtained from
reservoir simulation using the commercial black oil simula-
tor ECLIPSETM [16], and the CRM is used to approximate
the reservoir simulation model. When VpField

is unknown,

such as when the CRM is used to match real production
data, constraint Eq. P1C4 can be removed.

2.2 The Coupled CRMP

Cao et al. [11] developed the Coupled CRMP: a fully cou-
pled two-phase flow model based on CRMP. In addition to
the total fluid balance equation (i.e., the pressure or continu-
ity equation), they considered the oil mass balance equation
(i.e., the saturation equation). This model can calculate the
average saturation within a producer-based control volume,
the outlet saturation of a producer, and the time-variant time
constant. The following shows only the numerical solu-
tion to the saturation equation. For more details on the
derivation, see [10, 11].

Cao et al. [11] derived the semi-analytical explicit solu-
tion to the saturation equation as

So
k

j =So
k−1
j − �tk

Vpj

⎛⎝So
k−1
j (cf + co)

ct

(∑
i

λij I
k
j − qt

k
j

)
+ qo

k
j

⎞⎠ ,

(7)

where So
k

j is the average oil saturation within the control
volume of producer j at time k, and cf , co, and ct are the
pore, oil, and total compressibilities, respectively. Assum-
ing that the major contribution to oil saturation change is
from oil production rather than the effect of compressibil-
ity [23], Cao [10] eliminated the compressibility term in the
saturation equation and derived a simplified solution as

So
k

j = So
k−1
j − �tk

Vpj

qo
k
j . (8)

We will be using Eq. 8 rather than Eq. 7. Cao [10] proposed
using the Welge equation [10, 23, 34] to calculate the outlet
oil saturation of a producer as

So2
k
j = So

k

j +
∑nT

k=1 It
k
j

Vpj

(1 − fw
k
j ), (9)

where So2
k
j is the outlet oil saturation of producer j at time

k.
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Using the definition of the time constant,

τ k
j = Vpj

ct

Jt
k
j

, (10)

where Jt
k
j is the total productivity index of producer j at

time k, Eq. 10 can be rewritten as

τ k
j = Tj

Mk
j

, (11)

where

Tj = Vpj
ct

J
′
t j

, (12)

Mk
j = kro(So2

k
j )

μo

+ krw(So2
k
j )

μw

. (13)

Because J ′
t j is assumed to be constant, Tj is time-invariant

[11]. The total relative mobility Mk
j is time-variant because

it depends on the oil and water relative permeabilities, kro

and krw, which are functions of the outlet saturation. The oil
and water viscosities, μo and μw, are assumed to be con-
stant. It should be noted that the time constant is assumed to
be time-invariant in the CRMP-Koval Model, whereas it is
time-variant in the Coupled CRMP. Thus, the time-invariant
time constant τj in the solution of the total fluid continuity
equation (1) is replaced by the time-variant time constant
τ k
j , giving

qt
k
j = qt

k−1
j e

−�tk/τ
k
j + (1 − e

−�tk/τ
k
j )

(ninj∑
i=1

λij I
k
i

)
. (14)

The model parameters can be determined by solving the
least squares problem

min
Tj ,λij ,So

0
j ,Vpj

z =
nT∑
k=1

np∑
j=1

(qt
k
j − qt

k
j

obs
)2 (P2)

subject to

Tj ≥ 0, (P2C1)

λij ≥ 0, (P2C2)

Sor ≤ So
k

j , (P2C3)

So2
k
j ≤ 1 − Swi, (P2C4)

np∑
j=1

Vpj
≤ VpField

, (P2C5)

np∑
j=1

λij

{
< 1, if injection loss exists
= 1, if no injection loss

(P2C6)

where So
0
j is the initial average oil saturation of producer

j , Sor is the residual oil saturation, and Swi is the irre-
ducible water saturation. For the Coupled CRMP, the model
parameters are determined by matching only the total fluid
production data. This is because the water cut fw

k
j in Eq. 9

can be directly obtained from the production data. The frac-
tional flow model is constructed using the water cut data
plotted against the average oil saturation calculated from the
Coupled CRMP. Cao [10] used a polynomial function of
degree 3 to fit the fractional flow curve based on the histori-
cal data. We construct the fractional flow curve using a data
table consisting of existing water cut data against the calcu-
lated average oil saturation from the Coupled CRMP at each
time for each producer.

Using the Coupled CRMP for production prediction is
not as straightforward as using the CRMP-Koval Model
because production rates and saturations at any given time
are mutually dependent. In order to predict production with
minimal errors, production rates and saturations have to be
solved implicitly with iterations. For more details on the
iterative algorithm, see [10]. For a given predicted average
oil saturation, the water cut can be predicted by extrapo-
lation or interpolation of the water cut against average oil
saturation table constructed earlier. We use linear extrapola-
tion or interpolation to find the corresponding water cut for
a given average oil saturation, based on the data in the table.

3 Robust optimization (RO) of production

RO is performed over an ensemble of realizations represen-
ting the geological uncertainties. For a risk-neutral decision-
maker, the objective of RO is to optimize the EV over of
the ensemble. The purpose of production optimization is to
maximize the NPV. Assuming that all revenues are from oil
production and that all costs are induced by water injec-
tion and water production, the objective function for a single
realization can be defined as

J (u) = NPV (u)

= ∑nT

k=1
(qk

o (u)Po−qk
w(u)Pwp−I k(u)Pwi)�tk

(1+b)tk/D ,
(15)

where u is the control vector (i.e., a vector of control vari-
ables) defined as u = [u1, u2, ..., uN ]T, where N is the
number of control variables; qk

o is the field oil production
rate at time k; qk

w is the field water production rate at time
k; I k is the field water injection rate at time k; Po, Pwp,
and Pwi are the oil price, water production cost, and water
injection cost, respectively; b is the discount factor; tk is
the cumulative time for discounting; and D is the reference
time for discounting (D = 365 days if b is expressed as a
fraction per year and the cash flow is discounted daily). If



1428 Comput Geosci (2017) 21:1423–1442

a case involves multiple realizations, the objective function
becomes

J (u) =
∑ne

r=1 Jr(u)

ne

, (16)

where J is the EV of the objective functions over all realiza-
tions, Jr is the objective function (15) of a single realization
r , and ne is the number of realizations (i.e., ensemble size).

EnOpt method can significantly reduce the number of
simulations required for gradient calculation and can be eas-
ily implemented with any type of simulator. In the original
EnOpt, the ensemble of values for control vector u1 u2 ...
uM , where M is the ensemble size,3 is generated from a
multivariate normal distribution with predefined mean û and
predefined covariance matrix Cu, which is used to specify
the temporal correlation of the controls to limit the fre-
quency of changes in the controls. The predefined mean û
can be approximated by its sample mean u, i.e.,

û ≈ u =
∑M

r=1 ur

M
, (17)

and the average objective value J (̂u) can be approximated
by

J (̂u) =
∑M

r=1 Jr (̂u)

M
≈

∑M
r=1 Jr(ur )

M
. (18)

Chen et al. [13] used these two approximations to calculate
the mean-shifted ensemble matrix U and the mean-shifted
objective function vector j, respectively. However, Do and
Reynolds [15] did not find any advantage, theoretical or
practical, in approximating these two terms. Hence, the
mean-shifted ensemble matrix should be calculated directly
using the predefined mean û by

U = [u1 − û, u2 − û, ..., uM − û]T. (19)

Moreover, Fonseca et al. [17] suggested calculating the
mean-shifted objective function vector with respect to the
objective value of the predefined mean for each individual
realization instead of the average objective value (18), i.e.,

j = [J1(u1) − J1(̂u), J2(u2) −J2(̂u), ...,

JM(uM) − JM(̂u)]T.
(20)

The cross-covariance matrix is then

CuJ = 1

M
(U

T
j). (21)

Chen et al. [13] approximated the gradient by

g ≈ CuJ. (22)

3M = ne if each realization is coupled with one sample of values for
the control vector, i.e., a 1:1 ratio is applied, as in our case.

For each iteration, the control vector is updated as

ûl+1 = ûl + αl

gl∥∥gl

∥∥∞
, (23)

where the subscript l denotes the iteration number and α is
the step length for updating. Equations 19–23 constitute the
modified EnOpt formulation [17]. The original EnOpt for-
mulation can be obtained by replacing û with u in Eq. 19
and Jr (̂u) with the approximated J (̂u) in Eq. 20. Fonseca
et al. [17] showed that the modified EnOpt converges to
a higher objective value and more quickly than does the
original EnOpt. Therefore, we use the modified EnOpt.
The step length α significantly affect convergence speed. A
naive line search procedure is to simply reduce α by half if
J (̂ul+1) < J (̂ul). We use an interpolation-based line search
procedure to find a relatively large value of α that satisfies
the Armijo condition [26]. The line search procedure halts
when J (̂ul+1) > J (̂ul) or after seven iterations, whichever
comes first. The modified EnOpt halts after 30 iterations
of control vector updating. In our case, an optimal solution
is found during the first 5–15 iterations. However, we con-
tinue to iteration 30 in order to observe a clear evidence of
convergence.

4 The proxy-model workflow

When geological uncertainty is considered and is repre-
sented by hundreds of realizations, EnOpt usually requires
thousands of production prediction runs. In the traditional
workflow, production is predicted by running grid-based
reservoir simulation. The computational intensiveness of
a grid-based reservoir model can be reduced by having a
proxy model serve as a precursor. A proxy model must be
able to serve our purpose (i.e., useful), and its computational
time must be low (i.e., tractable). See the Discussion section
for the descriptions of “useful” and “tractable”. Figure 2
depicts the traditional and proxy-model workflows.

A proxy model should be chosen based on the reser-
voir characteristics and drainage scheme. More than one
potential proxy models may be found. For example, we
consider two CRM-based models for waterflooding. Thus,
we need to screen these potential proxy models by testing
their qualities of matching and prediction. ‘Pseudo pro-
duction data” are generated by reservoir simulation that
includes a random injection scheme.4 A history-matching
process is used to tune the parameters of a proxy model to
where the production predicted by the proxy model fits the

4We use the term “pseudo production data” because the data are
simulated rather than measured.
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Fig. 2 The traditional and proxy-model workflows

pseudo production data. The production predicted by the
history-matched proxy model is then compared to that of
the grid-based reservoir model, using another random injec-
tion scheme. If the difference is unacceptably large either at
the history-matching step or at the validation step, we test
another potential proxy model. If the difference is small at
both steps, we use the proxy model for production optimiza-
tion. After using the optimization algorithm with the proxy
model, we run simulation again on the grid-based reservoir
model with the optimal control vector of the proxy model to
get the final results (e.g., NPV). We conduct the last step for
evaluating the optimal control vectors of the reservoir sim-
ulation and proxy models on the same basis. This will be
discussed later.

5 Example with a 2D reservoir model

5.1 Description of the 2D reservoir model

This example uses a synthetic 2D reservoir model (“2D
Model”) to test the CRM-based models and the proxy-
model workflow. The 2D Model is an isotropic heteroge-
neous model with four injectors and one producer in a
five-spot pattern. The heterogeneity pertains to permeabil-
ity only. Figure 3 shows the permeability field in millidarcy
(md) and well locations of the model. The producer BHPs
are fixed at 200 bars. The control variables are injection
rates for 50 time intervals of 30 days each (i.e., a life cycle
of 1,500 days). For this specific example, the injection rates
of all injectors for a given day are assumed to be identical.
Thus, there are 50 control variables.

5.2 Screening of the CRM-based models

This section examines the suitability of the CRMP-Koval
Model and the Coupled CRMP for the proxy-model work-
flow. However, this screening process is not limited to
CRM-based models. For example, we can screen and com-
pare a CRM-based model to other useful and tractable
models such as the Interwell-Numerical-Simulation Model
(INSIM) [37].

Model parameter determination and matching quality
We determine the parameters of a proxy model by solving a
least squares problem using the interior-point optimization
algorithm in MATLABTM [25]. Holanda et al. [19] intro-
duced a matrix structure for the CRM representation that
does not need the analytical equation (1) for solving the least
squares problem using MATLAB. Solving the least squares
problem is actually a history-matching process because we
minimize the difference between the production profiles
predicted by the grid-based reservoir model and the proxy

Fig. 3 Illustration of the 2D model and its permeability field (indi-
cated by the colors) for the deterministic case. All values are in md
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Fig. 4 Random well injection scheme for matching, 2D model
example

model given an injection scheme. The well injection rates
are randomly generated from 0 to 200 m3/day (Fig. 4). The
closeness of matching is depicted in Figs. 6 and 7 and is
quantified by the coefficient of determination R2, defined as

R2 = 1 −
∑

k(d
obs
k − d

pro
k )2∑

k(d
obs
k − d

obs
)2

, (24)

where dobs
k is the observed production data (the production

predicted by the grid-based reservoir model in our case)
at time k, d

pro
k is the production predicted by the proxy

model at time k, and d
obs

is the mean of dobs
k over all k.

The closer R2 to 1, the better the matching. The values of
R2 are listed in Table 1. Both proxy models give almost
equally good matches of total fluid production rate. The
Coupled CRMP matches water cut better than the CRMP-
Koval Model because Koval model gives an abrupt end of
100% water cut for mature waterflood (i.e., when water
cut is high), as shown in Fig. 7 and demonstrated in [10,
11]. Therefore, we choose the Coupled CRMP for further
application.

Model validation and prediction quality Good matching
quality does not guarantee good prediction quality. This
section will investigate whether the history-matched cou-
pled CRMP can provide a production prediction close to
that of the 2D Model when the injection scheme is changed.
We generate a new random injection scheme as shown in

Table 1 R2 of matching, deterministic case, 2D model example

Total production rate Water cut

CRMP-Koval 0.9998 0.9847

Coupled CRMP 0.9999 0.9999

Fig. 5 Random well injection scheme for validation, 2D model
example

Fig. 5. The history-matched Coupled CRMP can provide
highly accurate prediction in total production rate, with an
R2 of 0.9998, and satisfactory prediction in water cut, with
an R2 of 0.9984, as illustrated in Figs. 8 and 9, respectively.

Run time The computational time required for production
prediction was around 4.1 s for the 2D Model by ECLIPSE
but only around 0.17 s for the coupled CRMP by MATLAB.
That is, the run time of production prediction is reduced
by a factor of 24 by using Coupled CRMP instead of grid-
based model. The run time of a grid-based reservoir model
is highly dependent on the number of grid blocks, num-
ber of wells, and geological complexity, whereas the run
time of a CRM-based model depends on only the number of
wells and model chosen (CRMT, CRMP or CRMIP). Thus,
a finer and/or more geologically complex grid-based reser-
voir model will have a run time more than 24 times greater
than that of its corresponding CRM-based model.

The shorter run time of the coupled CRMP enables faster
production prediction than using the 2D Model. Therefore,
the run time of production optimization will be significantly
reduced if we use the Coupled CRMP instead of the 2D
Model for RO.

Fig. 6 Matching of total fluid production rate, 2D model example
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Fig. 7 Matching of water cut, 2D model example

5.3 Life-cycle production optimization

We embed the Coupled CRMP into the proxy-model work-
flow to serve as a proxy for production optimization. We
consider two cases: a deterministic case where the perme-
ability field of the grid-based reservoir model is certain, and
a stochastic case where the permeability is uncertain and
represented by an ensemble. For both cases, we optimize
NPV for 50 time steps of 30 days each, yielding a period
of 1,500 days. In order to get a well-constructed fractional
flow curve for the Coupled CRMP, we extend the reservoir
simulation to 3,000 days for determining the model param-
eters so that the full range (0 to near 1) of water cut can be
covered. For NPV calculation, the oil price, water produc-
tion cost, water injection cost, and discount rate are set to
315 $/m3, 47.5 $/m3, 12.5 $/m3, and 8%, respectively.

The deterministic case The grid-based reservoir model
used for this case is the single geological realization
described earlier (Fig. 3). The model parameters of the Cou-
pled CRMP are determined by matching the production data
simulated by the 2D Model. The matching quality is shown
in Figs. 6 and 7. The history-matched Coupled CRMP is
then validated by contrasting its production prediction to

Fig. 8 Prediction of total fluid production rate, 2D model example

Fig. 9 Prediction of water cut, 2D model example

that of the 2D Model given a new injection scheme. The
prediction quality is shown in Figs. 8 and 9.

The well injection rate is constrained from 0 to 200
m3/day. As a base case, the well injection rate is set to 100
m3/day for the whole period of production.

Table 2 lists the base case NPV, the optimal NPV of the
Coupled CRMP, and the solutions obtained using the tradi-
tional and proxy-model workflows. Figure 10 illustrates the
optimal injection schemes of the Coupled CRMP and the
2D Model. For the 2D Model and the Coupled CRMP under
the optimal injection scheme of the Coupled CRMP, Fig. 11
shows the predicted total fluid production rate and Fig. 12
shows the water cut. These results indicate that the Coupled
CRMP again provides an accurate prediction, with an R2

of 0.9998 for total production rate and an R2 of 0.9968 for
water cut.

Compared to the 2D Model, the Coupled CRMP under-
estimates NPV ($31.960 million vs. $32.406 million) for
the same injection scheme. The results show that the proxy-
model workflow (i.e., applying the optimal strategy from the
Coupled CRMP to the 2D Model) can provide an optimal
NPV ($32.406 million) very close to that of the tradi-
tional workflow ($32.902 million). Figure 10 shows that the
proxy-model and traditional workflows result in different
optimal injection schemes. This is due to the stochastic fea-
ture of EnOpt and/or the approximation of the proxy model
to the grid-based reservoir model.

Table 2 NPVs [$ million], deterministic case, 2D model example

Model Base case Optimal Improvement

Coupled CRMP 23.767 31.960 34.47%

2D Model 24.476 32.406a,b 32.40%

2D Model 24.476 32.902c 34.43%

aWith optimal injection scheme of the Coupled CRMP
bThe solution of the proxy-model workflow
cThe solution of the traditional workflow
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Fig. 10 Optimal injection schemes of the 2D Model and the Coupled
CRMP, deterministic case

To further compare the Coupled CRMP with the 2D
Model, we depict in 3D their objective function spaces
using multi-dimensional scaling (MDS) [4, 17]. MDS can
project a set of high-dimensional vectors onto a 2D space
according to the Euclidean distance between any two of
them. In the 3D plot, the control vectors are projected on
the x-y plane, and the objective function values (i.e., NPV)
are on the z-axis. Because the objective function actually
occupies a high-dimensional space, errors in the Euclidean
distances and overlaps of vectors can occur in the 3D plot.
Nevertheless, the 3D plot provides useful insights into the
optimization problem.

Each 3D plot of the objective function space consists of
100 samples of normally distributed control vectors around
a central point (either the optimal injection scheme of the
Coupled CRMP or of the 2D Model), with a standard devi-
ation of 1/10 of the difference between the upper bound
(200 m3/day) and the lower bound (0 m3/day). In Figs. 13,
14, 15, and 16, the red dots represent the optimal control
vector either of the Coupled CRM or of the 2D Model,
the rings represent the random control vectors, and the big

Fig. 11 Total fluid production rate under the optimal injection scheme
of the Coupled CRMP, deterministic case, 2D model example

Fig. 12 Water cut under the optimal injection scheme of the Coupled
CRMP, deterministic case, 2D Model example

blue dots represent the control vector corresponding to the
highest NPV among all the samples. Figures 13 and 14 have
the same random control vectors and thus the same projec-
tion on the x-y plane. The same applies to Figs. 15 and 16.
However, the control vectors and projection of Figs. 13
and 14 are different from that of Figs. 15 and 16.

Comparing Figs. 13 to 14 and Figs. 15 to 16 confirms that
the objective function spaces of the Coupled CRMP and the
2D Model differ because of approximating the 2D Model
with the Coupled CRMP. However, they share some com-
mon features. For example, the locations of some of their
peaks and valleys are the same. Figure 13 shows that, on the
Coupled CRMP, EnOpt leads to a higher NPV than all the
sample vectors around it, indicating that it might be a global
optimum (at least in the control vector space around the
optimum found). However, for the 2D Model, Fig. 14 shows
that some control vectors can have a higher NPV than the
optimal control vector of the Coupled CRMP. Given that the
differences between the highest and lowest values are only
1.2% and 2.3% in Figs. 13 and 14, respectively, the spaces
can be considered plateaus with small bumps. Performing

Fig. 13 Objective function space of the Coupled CRMP around the
optimal control vector of the Coupled CRMP, deterministic case, 2D
model example
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Fig. 14 Objective function space of the 2D Model around the optimal
control vector of the Coupled CRMP, deterministic case, 2D model
example

EnOpt on the Coupled CRMP brings us to the plateau of
the 2D Model’s objective function space, but to a bump that
is somewhat lower than the highest. In Fig. 15, the optimal
control vector of the 2D Model has the highest NPV among
all the sample vectors, indicating that it might be a global
optimum. The optimal control vector of the 2D Model also
does not lead to an optimal NPV on the Coupled CRMP, as
shown in Fig. 16.

Figure 17 illustrates the objective function values of the
2D Model vs. that of the Coupled CRMP, where the blue
dots correspond to the control vector samples in Figs. 13
and 14, and the red dots do likewise for Figs. 15 and 16.
The Coupled CRMP is shown to underestimate NPV with a
largest difference of 3.8% for all the samples. This is why,
in the proxy-model workflow, we estimate NPV on the 2D
Model again after we have obtained the optimal control of
the Coupled CRMP.

The stochastic case In order to consider the uncer-
tainty in permeability, we generate 100 realizations of the

Fig. 15 Objective function space of the 2D Model around the optimal
control vector of the 2D Model, deterministic case, 2D model example

Fig. 16 Objective function space of the Coupled CRMP around the
optimal control vector of the 2D Model, deterministic case, 2D model
example

permeability field from a multivariate normal distribution.
Three of these realizations are shown in Fig. 18. The
matching procedure Eq. P2 is repeated for all the real-
izations, yielding 100 sets of the parameters of the Cou-
pled CRMP (i.e., an ensemble of the Coupled CRMP).
The injection schemes for matching and validation in this
case are the same as those used for the deterministic case
(Figs. 4 and 5). The qualities of matching and prediction
are shown in Figs. 19 and 20, respectively. The match-
ing quality is good: the minimal R2 (the worst matching)
for total production rate and water cut are 0.9950 and
0.9929, respectively. The prediction quality is not as good
as the matching quality, but still satisfactory with a mini-
mal R2 of 0.9946 for total production rate and 0.9546 for
water cut.

For robust production optimization, we use EnOpt to
maximize the expected NPV over all the realizations under
a single injection scheme. The starting point uses an injec-
tion rate of 100 m3/day for all the producers and time steps.
The optimal expected NPV of the 2D Model is $32.031
million and of the Coupled CRMP is $31.124 million. The

Fig. 17 Objective function values of the 2D Model vs. the Coupled
CRMP, deterministic case
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Fig. 18 Three realizations of the permeability field, stochastic case, 2D model example

Fig. 19 Matching of total fluid
production rate and water cut,
stochastic case, 2D model
example. a total fluid production
rate from the 2D Model, b water
cut from the 2D Model, c total
fluid production rate from the
Coupled CRMP, and d water cut
from the Coupled CRMP

Fig. 20 Validation of total fluid
production rate and water cut,
stochastic case, 2D model
example. a total fluid
production rate from the 2D
Model, b water cut from the 2D
Model, c total fluid production
rate from the Coupled CRMP,
and d water cut from the
Coupled CRMP
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Table 3 Expected NPVs [$ million], stochastic case, 2D model
example

Model Base case Optimal Improvement

Coupled CRMP 22.961 31.124 35.55%

2D Model 23.624 31.837a,b 34.76%

2D Model 23.624 32.031c 35.59%

aWith optimal injection scheme of the Coupled CRMP
bThe solution of the proxy-model workflow
cThe solution of the traditional workflow

expected NPV of the proxy-model workflow is $31.837
million, which is close to that of the traditional workflow.
Table 3 lists the expected NPVs. Figure 21 illustrates the
cumulative distribution functions (CDF) of NPV corre-
sponding to the optimal solutions of the 2D Model and of
the Coupled CRMP, and to the 2D Model under the opti-
mal injection scheme of the Coupled CRMP. The optimal
injection schemes are shown in Fig. 22.

As was found in the deterministic case, the proxy-model
and traditional workflows lead to similar optimal expected
NPVs, but to different optimal injection schemes and hence
different NPV distributions (the solid red curve vs. the solid
blue curve in Fig. 21). Again, the Coupled CRMP underes-
timates NPV (the dashed red curve vs. the solid red curve in
Fig. 21). The shapes of the cumulative distribution functions
(CDF) of NPV are very similar.

The total number of production prediction runs during
EnOpt was 21,800 for the Coupled CRMP and 15,600 for
the 2D Model. The run times of the Coupled CRMP and
the 2D Model for a prediction of 3,000 days were 0.17
and 4.1 s, respectively, and the computational time of one
history matching was 1.1 s. The 1,500-day run time of a life-
cycle prediction is one half of the run time of a 3,000-day
prediction. The total computational time of the traditional
workflow is

Fig. 21 CDF of NPV, stochastic case, 2D model example

Fig. 22 Optimal injection schemes, stochastic case, 2D model
example

Time for optimization

= 15, 600 × 4.1
2 = 31, 980 [s],

and of the proxy-model workflow is

(Time for matching) + (time for optimization)
+ (time for expected NPV calculation)

= 100 × (4.1 + 1.1) + 21,800 × 0.17
2+ 100 × 4.1

2= 2,578 [s].

The computation time required by the proxy-model work-
flow is therefore less than 1/10 that of the traditional
workflow. The distinction will become more pronounced if
the grid-based reservoir model has a finer grid block size or
higher geological complexity.

5.4 Impact on decision-making

This section explores the impact of any difference in opti-
mal solutions obtained by the proxy-model and traditional
workflows. We consider a simple decision-making context
that involves three decisions in series. The first decision has
two options: to continue developing the field at a cost of $10
million or to walk away. The second decision is whether to
install valves on the injectors at a cost of $2 million, given
that water would be injected at a constant rate of 100 m3/day
over the entire production life-cycle without valves or at any
rate from 0 to 200 m3/day with valves. The third decision
is to choose a water injection scheme if valves are installed.
All the decisions will be based on our current knowledge
about the field. We assume a risk-neutral case where the
objective is to optimize the EV.

Figures 23 and 24 illustrate the decision trees for the solu-
tions of the proxy-model and traditional workflows, respec-
tively, for the deterministic case. In decision trees, a square,
a circle, and a triangle represent a decision node, an uncer-
tainty node, and a payoff node, respectively. (See [6] for a
detailed description of using decision trees to solve hydro-
carbon production related decision-making problems.) The
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Fig. 23 Decision tree with the optimal solution of the proxy-model
workflow, deterministic case, 2D model example. All values are in $
million

decision trees in Figs. 23 and 24 select the same decisions
for the first and second decision nodes. However, the two
workflows make the third decision diverge, resulting in a
revenue of $20.406 million for the proxy-model workflow
(applying the blue line in Fig. 10) and a revenue of $20.902
million for the traditional workflow (applying the red line in
Fig. 10).

One reason of this difference is the stochastic feature of
EnOpt and the other is the verisimilitude or the richness5 of
the models. If we adjust for the stochastic feature of EnOpt,
the only difference between the proxy-model and traditional
workflows is in the verisimilitude of the predictive model
used for production optimization. The proxy-model work-
flow uses a model that is less rich but faster than that used
in the traditional workflow. To quantify the benefit that
the verisimilitude might offer, we introduce the value of
verisimilitude (VOV), which is defined as

V OV = v(urich) − v(uproxy), (25)

where v(u) is the true value of the decision given a control
u, urich is the control vector found by using the traditional
workflow, and uproxy is that found by the proxy-model
workflow. However, being that a given field can support
only one production strategy and can not yield the true value
until the end of production, the rich model is assumed to rep-
resent the truth. The VOV of the deterministic case shown
in Figs. 23 and 24 is $20.902 million – $20.406 million =
$0.496 million. Similar to the statement for value of infor-
mation (VOI) that “one cannot value information outside of
a particular decision context” [8], using a more verisimilar
production prediction model has no value in itself, unless it
changes our decision. Thus, the 2D Model (a richer model)
adds no value to the first and second decisions in this case.
It adds value only to the third decision. The VOV is pos-
itive because the 2D Model can capture more minor flow
behaviors than can the Coupled CRMP, giving a more accu-
rate production prediction under our assumption that the

5This paper uses “richness” interchangeably with “complexity” and
“verisimilitude” to indicate a high level of detail built into a model.

Fig. 24 Decision tree with the optimal solution of the traditional
workflow, deterministic case, 2D model example. All values are in $
million

2D Model represents the truth. However, the VOV ($0.496
million), compared to the NPV improvement ($20.406 mil-
lion − $14.476 million = $5.930 million) by installing the
valves and conducting the optimal injection scheme found
by performing EnOpt on the Coupled CRMP, is relatively
small. This is because the Coupled CRMP is already a good
approximation to the 2D Model.

For the stochastic case, the decision trees are illustrated in
Figs. 25 and 26. The P10, P50, and P90 values are shown in
the decision trees. The distributions of the NPV are expected
to differ because the proxy-model and traditional work-
flows lead to different optimal injection schemes. Given our
objective of maximizing the expected NPV of a particular
decision-making problem, the solution of the proxy-model
workflow gives an expected NPV very close to that of the
traditional workflow. This observation is consistent with
that in the deterministic case. To calculate the VOV, we
assume that each realization of the 2D Model is equi-
probable to be the truth. Hence, the VOV for one particular
realization is calculated as

V OV r = vr(urich) − vr(uproxy), (26)

where vr(u) is the value of the decision given a control vec-
tor u if realization r of the rich model is the truth. The
expected VOV (EVOV) is the EV of V OV r over all the
geological realizations. The EVOV is $20.031 million −
$19.837 million = $0.194 million for the case shown in
Figs. 25 and 26. The corresponding CDF of the VOV is
illustrated in Fig. 27 and shows that there is around 5.4%
chance of a negative VOV. The minimal VOV is −$0.096
million, and the maximal is $0.783 million.

We investigate the sensitivity of EVOV to the valve cost
by varying the latter. The results are plotted in Fig. 28 which
can be divided into three regions: valve cost lower than
$8.21 million (Region 1), between $8.21 million and $8.41
million (Region 2) and greater than $8.41 million (Region
3). In Region 1, the EVOV is a constant $0.194 million
because only the third decision is affected by whether the
proxy-model or traditional workflow is chose. In Region 2,
installing valves is called for by the traditional workflow
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Fig. 25 Decision tree with the
optimal solution of the proxy-
model workflow, stochastic
case, 2D model example

but not by the proxy-model workflow. In Region 3, EVOV
drops to 0 because neither the proxy-model nor the tradi-
tional workflow calls for installing valves. This illustrates
that the value of using a richer production prediction model
is decision-dependent.

6 Example with a 3D reservoir model

In this section, we apply the proxy-model workflow to a
synthetic 3D reservoir model (“3D Model”). The model
was introduced in [33] and was used in [17]. A chan-
nelized depositional system is modeled. The possible pat-
terns of highly permeable channels are described by 100
equi-probable geological realizations, three of which are
illustrated in Fig. 29. The model has eight water injectors
and four producers (Fig. 30). All the wells are vertical and
completed in all seven layers. Capillary pressure is ignored.
The reservoir rock is assumed to be incompressible.

The life cycle of the reservoir is 3,600 days. It is divided
into 40 time intervals of 90 days for water injection rate
optimization. Thus, there are 8 × 40 = 320 control vari-
ables. The water injection rate of an injector can be adjusted
from 0 to 60 m3/day. The base case is production under the
maximal allowable injection rate of 60 m3/day in all the
injectors for the entire life cycle. The injectors are operated

with no pressure constraint, and the producers are under a
minimal BHP of 395 bars without rate constraint. The oil
price, water production cost, and water injection cost are set
to 126 $/m3, 19 $/m3, and 5 $/m3, respectively. The discount
rate is set to 0.

The Coupled CRMP is used to approximate the 3D
Model. The resulting NPVs are listed in Table 4. The
optimal NPV obtained using the proxy-model workflow is
$43.359 million which is only 2.18% lower than that of the
traditional workflow ($44.326 million). The NPV improve-
ment attributable to the use of the 3D Model ($0.967
million) is much smaller than that attributable to production
optimization ($14.823 million). The computational time of
the 3D Model is 67 seconds, whereas that of the Coupled
CRMP is only 0.46 s. The total computational time for pro-
duction optimization is reduced by a factor of ten: from
408,700 s using the traditional workflow, to 40,582 s using
the proxy-model workflow.

For the decision problem illustrated in Figs. 25 and 26
(where the values for the 2D example should be replaced
by the values for the 3D example) again as an exam-
ple, using the 3D Model adds no value to the decision
of whether to develop the field, because the optimization
results of the proxy-model and traditional workflows both
call for development. For a total valve cost of $3.2 mil-
lion, using the 3D Model also adds no value to the decision

Fig. 26 Decision tree with the
optimal solution of the
traditional workflow, stochastic
case, 2D model example
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Fig. 27 CDF of the VOV, stochastic case, 2D model example

on valve installation. The 3D Model adds value only to
the decision on injection strategy, with an EVOV of $0.967
million.

7 Discussion

7.1 Proxy models

Whether using rich models or proxy models, one should
keep in mind the counsel of George E.P. Box [5]: All models
are wrong but some are useful.

Engineering uses models to support decision-making.
Good decision models are both useful and tractable. By
useful we mean that the model must be relevant and gen-
erate insight to resolve the decision at hand. Usefulness
also requires the model to be credible and transparent—will
the decision-makers believe the result of the analysis and
can the approach be clearly explained and understood? By
tractable we mean that the required analysis can be done
within the time and resources available.

Fig. 28 Sensitivity of EVOV to valve cost, stochastic case, 2D model
example

We might argue that both grid-based models and proxy
models (e.g., the CRM-based models) satisfy the useful-
ness requirement although a reservoir simulator such as
ECLIPSE, with its voluminous code, is so feature rich and
detail oriented that it is not transparent to most users. Fur-
thermore, as we have argued earlier, a rich grid-based model
is often not tractable—particularly when the underlying
problem is uncertain.

In decision-making contexts, we need cogent (com-
pelling) models. Companies tend to build too much detail
into their decision-making models from the start and focus
too much energy on specific cases or inputs that do not influ-
ence the decision. This level of modeling detail is really a
shirking of responsibility on the part of the decision analyst
who will and can build a model that includes only the most
salient factors. Building in detail may be easy, but building
in incisiveness is hard work.

The Coupled CRMP is cogent for the optimization and
decision problems discussed in this work. However, other
models such as the INSIM [37], streamline models [2],
reduced-order models [3], or upscaled grid-based reservoir
models [32] can be cogent in this or similar contexts and
can serve as proxy models. The purpose of introducing the
proxy-model workflow is to make the optimization pro-
cess tractable by reducing the computational requirements
while ensuring optimal or near-optimal decisions. Thus,
the desiderata of proxy models is that they are cogent–a
proxy model must be useful, tractable, and lead to incisive-
ness. This, in turn, requires the models to capture the most
relevant physics and mechanisms affecting production pre-
diction in reality and be very computationally attractive. As
shown in the plots of the objective function spaces (Figs. 13,
14, 15, and 16), even a very good approximation of a proxy
model to a rich model can lead to a different objective func-
tion space resulting in a different optimal result. The choice
and usefulness of a proxy model for this purpose is a func-
tion of the reservoir characteristics and drainage scheme.
Before screening proxy models, we must first identify main
affecting factors. For example, in this paper, we consider
a heterogeneous reservoir with water flooding, so a useful
proxy model must have the function to mimic the hetero-
geneity and predict production with various water injection
schemes.

A disadvantage of using proxy models is that many sim-
ple and fast models are case-specific and hence less flexible
than a grid-based reservoir model. For example, to check
the impact of adding a new well would entail re-determining
all the parameters of a CRM. Another problem is that the
possible values of the parameters of a proxy model are
usually too abstract to be readily determined. For exam-
ple, the connectivities and time constants of a CRM depend
on the permeability field, porosity field, well pattern, etc.
If production data are available, these parameters can be
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Fig. 29 Three realizations of
the permeability field of the 3D
model. All values are in md

determined by history matching; if not, there is seldom a
reference for them. However, fundamental physical param-
eters such as permeability in each grid block are much
more intuitive to engineers than are abstract ones like con-
nectivities. That is why, in the proxy-model workflow, we
propose to first generate pseudo production history by run-
ning grid-based reservoir simulations and then determine
the parameters of the proxy model by history matching.

7.2 CRM-based models

We have screened two CRM-based models. The Coupled
CRMP couples the saturation equation so that it can capture
the time-variant behavior of time constants and has a bet-
ter ability in water cut prediction than does the CRM-Koval
Model [10]. Both models are producer based, as illustrated
in Fig. 1b. An inherent flaw of a CRMP is that the region
in the control volume is treated as homogeneous, which can
lead to incorrect water cut prediction when well injection
rates change because there is no difference between water
injected into a more permeable region and into a less per-
meable region in the control volume of CRMP. The CRMIP
can better capture heterogeneity.

Although the Coupled CRMP includes the time-variant
behavior of time constants, it does not consider the time-
variant behavior of connectivities. Gentil [18] formulated
connectivity as a function of transmissibilities, but we found
no literature that introduced an equation to calculate the
time-variant connectivities.

Despite the limitations of the Coupled CRMP, it has
shown to provide a near-optimal solution. Thus, further

Fig. 30 Well locations of the 3D Model

improvements in the Coupled CRMP might not create much
value for cases similar to the examples shown.

7.3 Performance of the Coupled CRMP
in the proxy-model workflow

The performance of the Coupled CRMP in the proxy-model
workflow depends on two factors: computation time and
optimization result.

The computation for the proxy-model workflow takes
about a factor of ten less time than that for the traditional
workflow. In a more realistic case involving a much richer
grid-based reservoir model, the proxy-model workflow will
save even more computation time but could weaken the abil-
ity of the Coupled CRMP to approximate the grid-based
reservoir model. This tradeoff can be evaluated by analyz-
ing the VOV. A significant computation time reduction with
small VOV would suggest using the proxy model.

Because of the difference between the objective function
spaces of the 2D Model and the Coupled CRMP (Figs. 13,
14, 15, and 16), the optimal injection schemes of the proxy-
model and traditional workflows are different. Nevertheless,
the proxy-model workflow provides an optimal expected
NPV very close to that of the traditional workflow, with dif-
ferences of only 0.61% for the 2D Model and 2.18% for
the 3D Model. This might be because the locations of the
major plateaus and basins of the objective function spaces
of the grid-based model and the Coupled CRMP are almost
the same, with only the locations of small bumps being
different.

Table 4 Expected NPVs [$ million], 3D model example

Model Base case Optimal Improvement

Coupled CRMP 29.658 43.255 45.85%

3D model 28.536 43.359a,b 51.94%

3D model 28.536 44.326c 55.33%

aWith optimal injection scheme of the Coupled CRMP
bThe solution of the proxy-model workflow
cThe solution of the traditional workflow
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7.4 The VOV/EVOV

The VOV/EVOV is a measure of the value of using a
richer production prediction model for production opti-
mization in a decision-making context. In our examples,
because the Coupled CRMP is a good proxy to the grid-
based model and because their optimal objective function
values (NPV) are very close, the VOV/EVOV is low or
zero, indicating that using a grid-based model instead of
the Coupled CRMP might not create any value. Therefore,
the value of using a richer production prediction model is
decision-dependent.

Although EVOV is positive in our examples, VOV for
a particular realization can be negative. This indicates that
using a richer production prediction model for production
optimization cannot guarantee a better control than using a
proxy model.

The VOV/EVOV can be compared with the computa-
tional cost (converted to monetary terms) saved by using the
proxy-model workflow instead of the traditional one: if the
computational cost saved exceeds the VOV/EVOV, then the
proxy model is preferable.

Bratvold and Begg [7] noted that “companies tend to
build too much detail into their decision-making models
from the start.” This pitfall might be avoided by being aware
of and calculating VOV/EVOV. Unfortunately, VOV, as we
have defined it, can be estimated only by running both
the rich model and the proxy model. Ideally, VOV should
be obtained without running the rich model. One possible
solution is to build a database of VOV assessments, which
can eventually be used to estimate the value of using a richer
production prediction model for similar cases.

8 Conclusions

We have presented a proxy-model workflow for reducing the
computation time of robust production optimization. The
proxy-model workflow uses a proxy model to approximate a
rich model. We screened two CRM-based models and inves-
tigated the goodness of using the Coupled CRMP to serve
as a proxy model, using synthetic 2D and 3D reservoir mod-
els as examples. The results showed that the proxy-model
workflow can provide an objective function value that is
very close to the optimal value found by using the tradi-
tional workflow, but a different optimal control vector. The
computation time decreased by a factor of more than ten.

We used the MDS approach to visualize the objective
function spaces of the 2D Model and the Coupled CRMP.
This gives insight on how a proxy model affects optimal
results. It was shown that even a very good proxy model can
lead to obvious deviations from the objective function space
of a rich production prediction model.

VOV/EVOV was used to quantify the value of using a
richer model for production prediction, which was shown to
be decision-dependent. Using a richer production prediction
model does not always provide greater value than does using
a proxy model.

We conclude that CRM-based models have high potential
to serve as a cogent proxy model for waterflooding related
decision-making context and that the proxy-model work-
flow, leveraging a faster, but relevant, production model,
significantly speeds up the optimization yet gives robust
results that leads to a near-optimal solution.

Nomenclature

Greek letters
α Step length for control vector updating
�tk Time step length between times k and k − 1
λij Connectivity between injector i and producer j

μo Oil viscosity
μw Water viscosity
τj Time-invariant time constant for producer j

τ k
j Time-variant time constant for producer j at time k

Roman letters
b Discount factor
cf Pore compressibility
co Oil compressibility
ct Total compressibility
Cu Predefined covariance matrix of u
CuJ Cross-covariance matrix between u and J

dk Production data at time k

d Mean of dk over all k

D Reference time for discounting
fw

k
j Water cut in producer j at time k

g Gradient for control vector updating
I k
i Water injection rate in injector i during �tk

It
k
j Total water injection contribution from all

injectors to producer j over �tk

j Mean shifted objective function vector
J Objective function of production optimization
Jr J for realization r

J EV of J

Jt
k
j Total productivity index of producer j at time k

J ′
t j Constant in Equation 12 for producer j

kro Oil relative permeability
krw Water relative permeability
Kvalj Koval factor of producer j

M Number of perturbed control vectors (i.e.,
ensemble size of control vector)

Mk
j Total relative mobility for producer j at time k

ne Number of geological realizations (i.e.,
ensemble size of geological realization)
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ninj Number of injectors
np Number of producers
nT Number of time steps
N Number of control variables
Po Oil price
Pwi Water injection cost
Pwp Water production cost
qo

k
j Oil production rate in producer j at time k

qt
k
j Total fluid production rate in producer j at time k

qw
k
j Water production rate in producer j at time k

R2 Coefficient of determination
Sor Residual oil saturation
So2

k
j Outlet oil saturation of producer j at time k

Swi Irreducible water saturation
So

k

j Average oil saturation within the control volume
of producer j at time k

tDj Dimensionless time of producer j

tk Cumulative time for discounting at time k

Tj Constant in Equation 11 for producer j

u Control variable
u Control vector or vector of control variables
ur u for realization r

û Predefined mean of u
u Sample mean of u
U Mean shifted ensemble matri
v Value function
Vpj

Drainage pore volume of producer j

VpField
Total pore volume of the field

Superscripts and subscripts
i Index of injector
j Index of producer
k Index of time
l Index of optimization iteration
o Oil
r Index of realization or ensemble member
w Water
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Abstract 
Although numerical techniques (e.g., reservoir simulation) have developed rapidly for modeling oil production in 
the past decades, simple production models with a few parameters are still of significant use in the oil and gas 
industry because of they are computationally attractive. Especially for decision analysis, which can be 
computationally demanding, a useful and tractable model is essential. 

A particular decision for development design is: when is optimal to start an improved-oil-recovery (IOR) process 
such as waterflooding or gasflooding? This decision relates to the plan of manufacturing, transporting and installing 
the equipment, allocating both financial and human resources and licensing for production. Solving this problem 
using a state-of-the-art reservoir management approach closed loop reservoir management (CLRM) may result 
in a sub-optimal solution because the CLRM approach considers only the uncertainties and decisions associated with 
currently available data but not the uncertainties and decisions associated with future data. 

This paper illustrates a method for performing a fast analysis of the optimal IOR start time using a two-factor 
production model and least-squares Monte Carlo (LSM) algorithm. The two-factor production model is similar to an 
exponential decline and contains only two parameters for each recovery phases. Thus, it is very computational 
attractive. The LSM algorithm is an approximate dynamic programming approach, which considers both the impact 
of the information obtained before a decision is made and the impact of the information that will be obtained on the 
decisions that will be made in the future. It therefore provides a near-optimal solution for the IOR start time 
problem. 

The main contributions of this work are (1) a simple example illustrating the full structure of the IOR start time 
problem visualized by a decision tree, (2) demonstration and discussion of the sub-optimality of the CLRM solution, 
(3) illustration of the detailed steps of applying the LSM algorithm, and (4) an example of the implementation of the 
two-factor model combined with the LSM algorithm for analyzing the optimal IOR start time. 

The LSM algorithm can significantly improve the decisions 
economic performance. Using the two-factor model combined with the LSM algorithm can provide useful insight in 
the problem of deciding the optimal IOR start time with limited computational resource. 
 
Introduction 
Although numerical techniques (e.g., reservoir simulation) have developed rapidly for modeling oil production in 
the past decades, simple production models with a few parameters are still of significant use in the oil and gas 
industry for the following possible reasons. In the development phase and early stage of production, there is little 
available information that can provide enough details for building a complex reservoir simulation model with 
thousands of parameters. Besides, when uncertainties are considered, Monte Carlo simulation is a common practice 
where a large number of production forecast runs are required. Thus, computationally intensive reservoir simulation 
models can easily make the use of Monte Carlo simulation computationally prohibitive. 

Decision analysis in a reservoir management context may suffer from large computational costs because of many 
uncertain outcomes and sequential decisions points. Thus, a useful and tractable production model is essential for 
decision analysis. 
decisions at han
available. We argue that companies tend to build too many details into their decision-making models from the start 
and focus too much effort on specific cases or inputs that may not influence the decisions. This means that decision 
analysts can only include the most salient factors in their models (Bickel and Bratvold2008; Hong et al. 2017). As 
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Howard has 
comprehensive, but rather keeping them simple enough to be affordable and useful.  

A particular decision for development design is: when is the best (the optimal) time to start the improved-oil-
recovery (IOR) process such as waterflooding or gasflooding? The IOR start time is related to the plan of 
manufacturing, transporting and installing the equipment, allocating both financial and human resources and 
licensing for production.  

A useful and tractable production model for this problem setting is the two-factor production model proposed by 
Parra-Sanchez (2010). This model is based on the exponential decline model. For each individual recovery phase, it 
uses only two parameters to describe the reservoir properties and the effect of the recovery mechanism. A more 
detailed description of this model follows later. Parra-Sanchaz validated it using  field production data and further 
used this model for life cycle optimization where an integrated depletion strategy of the life times of each recovery 
phase is optimized under the consideration of multiple recovery phases as a whole. She concluded that, compared to 
the traditional optimization approach where the life time of each recovery phase is optimized only under the 
consideration of this individual recovery phase, the life cycle optimization approach significantly improves the 

in terms of net present value (NPV) and severely reduces the total life time of 
production.  

A big concern that has not been included in Parra- the impact of future information on 
sequential decision making (i.e., the impact of learning over time). The reservoir properties and the effect of 
recovery mechanism are uncertain because of our lack of knowledge and their uncertainties are represented by 
uncertain model parameters. After the production has started, we will obtain additional production data and the data 
will be used to update knowledge and support our decisions. For example, at the primary recovery phase, the 
production data informs us about the reservoir properties and the effect of the primary recovery mechanism, and we 
can then adjust our decision on the life time of primary recovery based on the information obtained. 

The closed loop reservoir management (CLRM) approach (Brouwer et al. 2004; Nævdal et al. 2006; Chen et al. 
2009; Wang et al. 2009; Jansen et al. 2009) is a state-of-the-art approach of including the impact of information on 
sequential decision making in reservoir management. In the CLRM approach, the loop of model updating through 
history matching and production optimization is performed continuously when additional data becomes available. 
However, this approach is myopic1 and may lead to a sub-optimal decision policy because it considers only the 
impact of the information obtained before a decision is made but not the impact of the information that will be 
obtained on the decisions that will be made in the future. 

Decision tree is a useful decision analysis tool for visualizing and communicating the structure of such 
sequential decisions. In the structured 
the reservoir management approach that considers explicitly the full structure of a sequential decision-making 
problem. A FSRM problem can be solved by rolling back the corresponding decision tree. For a more detailed 
description of the use of decision tree see Howard and Abbas (2016), and Bratvold and Begg (2010).  

The decision tree approach is essentially dynamic programming. For complex problems with many uncertain 

it can be quite involved to solve these complex problems (semi-) analytically using dynamic programming. 
Fortunately, efficient approximate dynamic programming methods are available. One of them is the least-squares 
Monte Carlo (LSM) algorithm developed by Longstaff and Schwartz (2001) originally for solving a real option 
problem. curse of the number of uncertain quantities. However, the computational effort it 
requires increases exponentially with the number of alternatives. Thus, it suits problems with a few alternatives. 
Recently, it has gained more uses in the oil and gas industry (Hem et al. 2011; Willigers et al. 2011; Alkhatib and 
King 2011; Jafarizadeh and Bratvold 2012, 2013; Thomas and Bratvold 2015). 

Following this introduction, we first briefly review the two-factor production model and economic model 
proposed by Parra-Sanchez (2010). Next, we compare and discuss the CLRM and FSRM approaches for integrating 
the impact of information in production optimization. Thereafter, we present the central steps of applying the LSM 
algorithm. We then use a simple example to illustrate the difference between the CLRM and FSRM solutions and to 
show the detailed steps of applying the LSM algorithm. We conclude with a more realistic example where we 
perform a fast analysis of the optimal IOR start time using the two-factor model combined with the LSM algorithm. 
Finally, we present a discussion and conclusions. 

 
                                                           
1  or naïve 
the uncertainties we have learnt so far and does not consider the uncertainty nodes that representing the future 
uncertainties we will learn in the future. That is, a myopic approach does not allow for learning over time. 
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Two-Factor Production Model and Economic Model 
This section presents the two-factor production model and economic model proposed by Parra-Sanchez (2010). The 
two-factor production model can integrate multiple recovery phases (primary, secondary, tertiary recoveries and so 
on) for achieving a life cycle optimization analysis. 

Two-factor Model. The two-factor model is based on the exponential decline proposed by Parra-Sanchez 
(2010). She formulates the exponential decline for the recovery efficiency to be 

 
  (1) 
 
where  is the recovery efficiency up to time ,  is the recovery efficiency at time 0,  is the theoretical 
ultimate recovery efficiency and  is a time constant. The recovery efficiency  is defined as the fraction of 
original oil in place (OOIP) that has been produced. The two factors,  and , depend on the reservoir properties 
(e.g., permeability) and production mechanisms, and represent the essence of reservoir engineering.  describes 
how much recovery efficiency that a recovery mechanism can theoretically and ultimately achieve.  describes how 
fast the recovery efficiency increases for a recovery mechanism. They are assumed to be constant for a certain 
recovery phase, although they can be time-variant. 

Thus, for primary recovery, we have 
 

  (2) 
 

where the subscript 1 denotes the first recovery stage (primary recovery) and the primary recovery efficiency at time 
0, , is 0. Given that primary recovery will be shifted to secondary at time  (i.e. the life time of primary 
recovery is ), the recovery efficiency for secondary recovery is calculated using 
 
  (3) 
 
where  is the recovery efficiency at the end of primary recovery and  is the theoretical ultimate 
recovery efficiency increment caused by converting from primary to secondary recovery. Similarly, the recovery 
efficiency equation for  
 

  (4) 

 
where  is the life time of the  is the recovery efficiency at the end of ( -

 is the theoretical ultimate recovery efficiency increment caused by shifting from ( -
 

Economic Model. The net present value (NPV) is a commonly used performance indicator for reservoir 
management.  NPV is defined as 

 

  (5) 

 
where  is the time length of a production life cycle,  is the cash flow from times -1 to , and   is the discount 
rate. We calculate  as 
 
  (6) 
 
where  is the oil price,  is the estimated OOIP,  is the capital costs from times -1 to , and  is the operating 
costs from times -1 to . 

When multiple recovery phases are involved, the NPV is a function of the life times of each phase. Our objective 
for production optimization is to maximize the NPV by adjusting the life times of each phase, i.e. to identify the 
optimal time of shifting the current recovery phase to the next recovery phase. 
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This work focuses on only geological uncertainties. Thus, the economic model parameters , ,  and  are 
assumed to be certain values. Refer to Thomas and Bratvold (2015) for the implementation of the LSM algorithm 
with regards to oil and gas price uncertainties for a gas cap blowdown problem. The uncertainty in the reservoir 
properties is represented by assigning a probability distribution to each of the model parameters , ,  and 

. For a risk-neutral decision maker2, the objective is to optimize the expected NPV (ENPV) over the uncertain 
model parameters. 
 
Integrating the Impact of Information in Production Optimization 
In decision making, the optimization problem on deciding the life times of each recovery phase can be interpreted 
as: for a series of decision points in time; we must decide whether we should continue with the current recovery 
phase or shift to the next recovery phase at each decision point. This is a sequential decision-making problem. As 
production continues, we are continuously getting more information from, for example, production data. These data 
are used to inform our uncertainty in the reservoir properties through history matching, and support our decision 
making. Thus, in production optimization, we should include the impact of information. A state-of-the-art approach 
of integrating information in production optimization is the closed loop reservoir management (CLRM) approach. A 
more advanced approach is the fully structured reservoir management (FSRM) approach. The following briefly 
presents these two approaches and illustrates the difference between them. 

Closed Loop Reservoir Management. 
ptimization is 

closed by continuously update a production model with several realizations and performing life-cycle optimization 
whenever new data becomes available (Brouwer et al. 2004; Nævdal et al. 2006; Chen et al. 2009; et al. 2009; 
Jansen et al. 2009). 

Several realizations of an initial production model are built based on the prior knowledge of the reservoir, and an 
initial production strategy for the whole life cycle is determined by optimizing the expected value (EV) over the 
initial realizations of the production model. The initial production strategy is applied to the real field until new data 
becomes available. The new data is used to update the production model, and a new production strategy for the 
period from the time after the new data has become available to the end time of the life cycle is determined by 
optimizing the EV over the updated realizations of the production model. The new production strategy is applied to 
the real field until new data becomes available. Repeating the process keeps the reservoir management up to date. 

In the viewpoint of sequential decision making, the CLRM is a myopic decision policy where the uncertainties 
associated with current available data are considered but the uncertainties associated with future data are not 
(Kullawan 2016; Thomas 2016). A decision tree3 representation for this approach is illustrated in Fig. 1 where  
denotes a decision made at time  and  denotes the uncertainties associated with current available data until . 

 is commonly represented by a production model with several realizations. The production strategy , 
 is determined with the consideration of only the immediate relevant uncertainty . 

 

 
Fig. 1 Illustration of the decision tree for the CLRM. 

 
The advantage of CLRM is that it greatly simplifies the structure of a reservoir management decision problem 

and consequently, requires less computational cost for solving the problem. Its significant drawback is that it does 
not reflect the full structure of a reservoir management decision problem and thus, may lead to a sub-optimal 
production strategy. 

Fully Structured Reservoir Management. The full structure of a sequential decision-making problem is 
illustrated by the decision tree in Fig. 2. The FSRM approach aims to solve for the optimal decision policy based on 
a fully structure decision tree. 
                                                           
2 Risk-neutrality is a risk attitude of being neither risk-averse nor risk-seeking. A risk-neutral decision maker uses 
only expected value as his decision criterion, i.e., he is indifferent between choices with equal expected values no 
matter what the risk of a choice is. 
3 In a decision tree, a square represents a decision node and a circle represents an uncertainty node. 
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The FSRM explicitly considers both the uncertainties associated with currently available data ( ) and that with 
future data ( ). Therefore, the current decision ( ) does not depend on only the uncertainties that a 
decision maker have learnt so far but also the uncertainties that the decision maker will learn in the future. The 
FSRM includes the dec ) to the uncertainties associated with future data 
( ).  

 

 
Fig. 2 Illustration of the decision tree for FSRM. 

 
 
Solving the decision tree in Fig. 2 gives the optimal production strategy. However, the FSRM can be 

computationally intensive or even prohibitive compared to the CLRM. 
 
Least-Squares Monte Carlo Algorithm for Fully Structured Reservoir Management 
The Least-Squares Monte Carlo (LSM) is a promising algorithm for solving a FSRM problem. It was proposed by 
Longstaff and Schwartz (2001) for an American option problem which involves a yes-no decision: at anytime, an 
option holder can decide whether to immediately exercise the option at current stock price or to continue the option 
for exercising it at future stock price. The stock price is an uncertain quantity in an American option problem, whose 
uncertainty can be modeled as a Markov process, and thus, the future value of an alternative conditions only to the 
current stock price. 

However, geological uncertainty does not only depend on the currently measured data but also the previously 
measured data and consequently, the future value of an alternative conditions to currently and previously measured 
data. To deal with our problem at hand, we slightly modify the LSM algorithm to include the dependency of the 
future value on the currently and previously measured data. The two central steps of our modified LSM algorithm 
are 

1) Monte Carlo Simulation (MCS) Step: 
 independent samples of model parameters representing geological uncertainties are generated using 

MCS. For one sample of model parameters, forward modeling is performed to provide modeled 
production data from  (time 0) to  (end time); and then, random noises generated based on the 
statistics of the measurement errors4 are added to the modeled production data to provide a sample of 
measured data. Because this sample of measured data consists of a series of data points in time, it is also 
called a path of measured data. Repeating this procedure for each of the  sampled sets of model 
parameters, we obtain  paths of measured data, i.e. . 

2) Least Squares Step: 
For the th sample of model parameters, the NPV of alternative  is calculated, giving . This 
is repeated for the  sampled sets of model parameters, resulting in

. To estimate the ENPV with alternative  conditional on the 
measured data, , we regress  on . This 
procedure is repeated for each of the alternatives. 

More detailed steps of applying the LSM algorithm will be illustrated in the following example. 
 
Illustrative Example 
This section uses a simple example to illustrate the fully structured decision tree for the problem of determine the 
optimal IOR start time, the difference between CLRM and FSRM solutions and how to use the LSM algorithm to 
solve the problem. 

Problem Setting. A field has a life cycle of 15 years. We consider a yes-no decision at Years 0, 5 and 10: 
whether primary recovery should be shifted to secondary recovery. The shift can only happen once. The production 
is modeled by a function  with parameters . The geological uncertainty is represented by 3 realizations (R1, R2 
                                                           
4 In the context of history matching, a common practice is to treat the data fluctuations caused by changes in 
operating conditions as caused by measurement errors (Jochen and Spivey 1996). 
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and R3) of the production model parameters ( ,  and ). These realizations are a priori equi-probable. Fig. 3 
illustrates the primary recovery efficiency as a function of time for the realizations. 

 

 
Fig. 3 Primary recovery as a function of time for 3 geological realizations. 

 
The NPVs corresponding to each alternative and each realization are in Table 1.  All the values are in million 

USD. 
 

Realization Shift at Time No Shift    
R1 1700 1880 2170 3500 
R2 1800 2240 2430 2130 
R3 2430 3540 3110 1810 

 
Table 1 NPVs corresponds to each alternative and each realization. 

 
The measured primary recovery efficiency is used to inform the decisions. The likelihood functions, listed in 

Table 2, are used to describe the measurement errors. For example, given that the truth is R1, the probability of the 
measurement at   measured data of 0.18) is 0.75, and the probability of the 
measurement at   

 

 Given the truth is 
R1 R2 R3 

Measurement 
at  says 

 
 0.75 0.25 0.75 

 
 0.25 0.75 0.25 

 

Measurement 
at  says 

 
 0.80 0.20 0.20 

 
 0.20 0.80 0.80 

 
Table 2 Likelihood functions for the measured primary recovery efficiency. 

 
Decision and Expected Value without Information. If the impact of future information on the series of 

decisions is not considered, the ENPV is calculated based on the a priori probability of each realization (i.e. 1/3). For 
this case, the optimal decision is referred to as the decision without information (DWOI), and the corresponding 
optimal EV is referred to as the EV without information (EVWOI).  Thus, the DWOI is 
EVWOI of $2570 million. 

Decision and Expected Value with Perfect Information. Perfect information reveals the truth. For example, if 
the perfect information indicates R1, then R1 is the truth and we can identify the optimal decision by maximizing 
the NPV of R1. The optimal decision and EV for this case are referred to as the decision and EV with perfect 
information (DWPI and EVWPI), respectively. 
time 
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EVWPI of $3156.7 million. The value-of-perfect-information (VOPI)5 is thus EVWPI  EVWOI = $3156.7 million 
 $2570.0 million = $586.7 million. 

FSRM Solution: Decision and Expected Value with Imperfect Information. The likelihood functions in 
Table 2 indicate the reliability of the data and show that the information is imperfect. The optimal decision and EV 
for such case are referred to as the decision and EV with imperfect information (DWII and EVWII), respectively. 

We construct the full decision three for this problem setting, as illustrated in Fig. 4, to help in identifying the 
DWII and EVWII. From the tree, we 
can see that we should continue with primary recovery at  no matter what the measurement at  says, and 
continue with primary recovery at  if the measurement at  
recovery at  if the measurement at   The corresponding EVWII is $2818 million, resulting 
in a value-of-information (VOI) of EVWII  EVWOI = $2818 million  $2570 million = $248 million. 

CLRM Solution. We solve the same problem using the CLRM approach. Unlike that the FSRM approach which 
solves the decision tree backwards (i.e. rollback from the right nodes to the left-most node in the tree), the CLRM 
approach solves the tree forwards. For example, given the measurement at  
probabilities of R1, R2 and R3 are 0.43, 0.14 and 0.43, respectively; based on these probabilities, the EV is $2642.9 
million for ing at  no shift

 is to shift to secondary recovery. 
The decision policy of the CLRM approach is listed in Table 3. Applying this decision policy to the decision tree in 
Fig. 2 results in an EV of $2641.2 million corresponding to a special VOI6 of $71.2 million. 

Compared to the FSRM approach, the CLRM approach gives a difference decision policy and a lower VOI. The 
CLRM approach realizes only 71.2/248 = 28.7% of the value that the information can create. This is because when 
the impact of future information is not considered in the CLRM approach, the CLRM approach makes a decision 
based on the immediate gain rather than evaluating whether it is worth continuing for gathering more information as 
the FSRM approach does. 

 
Decision at Time 

   

Continue with 
primary recovery. 

Shift to secondary recovery 
if measurement at  

 

No action because it has been shifted to 
secondary recovery at . 

Continue with primary recovery 
if the measurement at  says 

 

Continue with primary recovery 
if the measurement at  

  
Shift to secondary recovery 

if the measurement at  
  

 
Table 3 Decision policy of the CLRM approach. 

 

                                                           
5 The concept of value-of-information (VOI) originates from the decision analysis community. VOI is an indicator 
of the maximal paying price or cost of an information gathering activity. VOPI is the upper limit of VOI. For a more 
comprehensive description of the concept of VOI, consult Raiffa and Schlaifer (1961), Howard (1966), and Bratvold 
et al. (2009). For the illustration and discussion of adopting the concept of VOI in history matching contexts, refer to 
Hong and Bratvold (2017). 
6 Per the strict definition of VOI, it is referred exclusively to that associated with the optimal decision policy (i.e. the 

sub-optimal decision policy (i.e. the CLRM approach in our case). 
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Fig. 4 Fully structured decision tree for the illustrative example. 

 
Solving the FSRM Problem Using the LSM Algorithm. We use the modified LSM algorithm to solve the 

FSRM problem as shown in Fig. 4. For illustration, we use only 6 Monte Carlo samples. The number of samples 
will be increased later to verify the modified LSM algorithm. We first sample 6 paths of the measured data as listed 
in Table 4. Then, we start the LSM from the last decision point as we solve the decision tree backwards. Table 5 

 (to secondary 
 for each path. 

 

Path Geological 
Realization 

Data at 
 ( )  ( ) 

1 R2 0.18 0.22 
2 R1 0.18 0.34 
3 R3 0.13 0.34 
4 R1 0.13 0.34 
5 R3 0.18 0.22 
6 R2 0.13 0.22 

 
Table 4 Path of measured data for LSM. 
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Path Geological 
Realization 

NPV [million USD] 
Continue Shift 

1 R2 2130.0 2430.0 
2 R1 3500.0 2170.0 
3 R3 1810.0 3110.0 
4 R1 3500.0 2170.0 
5 R3 1810.0 3110.0 
6 R2 2130.0 2430.0 

 
Table 5 NPVs for alternatives at time  for LSM. 

 
When we are making the decision at , we have obtained the data at both  and . Therefore, the ENPV is 

conditional on the data at both  and . We estimate the ENPV by regressing NPV on data. Using 
, 

. The same is d Table 6 lists 
 for each path. Now, we can make 

the optimal decision by taking the alternative that gives the highest ENPV for each path. The optimal decision is 
colored in red in Table 6. 

 

Path ENPV [million USD] 
Continue Shift 

1 2137.5 2635.0 
2 3165.0 2440.0 
3 2822.5 2505.0 
4 2822.5 2505.0 
5 2137.5 2635.0 
6 1795.0 2700.0 

 
Table 6 ENPVs for alternatives at time  for LSM. 

 
We move one time step backwards to . Table 7 

 5 for the optimal 
decisions shown in Table 6. 

 

Path Geological 
Realization 

NPV [million USD] 
Continue Shift 

1 R2 2430.0 2240.0 
2 R1 3500.0 1880.0 
3 R3 1810.0 3540.0 
4 R1 3500.0 1880.0 
5 R3 3110.0 3540.0 
6 R2 2430.0 2240.0 

 
Table 7 NPVs for alternatives at time  for LSM. 

 
When we are making the decision at , the data at only  is available but not . Therefore, the ENPV is 

conditional on the data at only . Using , the resulting conditional expectation 
 Table 

8  for each path, and the optimal 
decisions are in red. 
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Path ENPV [million USD] 
Continue Shift 

1 3013.3 2553.3 
2 3013.3 2553.3 
3 2580.0 2553.3 
4 2580.0 2553.3 
5 3013.3 2553.3 
6 2580.0 2553.3 

 
Table 8 ENPVs for alternatives at time  for LSM. 

 
We move to . Table 9  for each 

imal decisions shown in Table 
8. Because we have no data available at , we calculat
mean of the values in columns 4 and 5, respectively, in Table 2796.7 

1976.7 million. Thus, the optimal decision at  
is $2796.7 million. 

 

Path Geological 
Realization 

NPV [million USD] 
Continue Shift 

1 R2 2430.0 1800.0 
2 R1 3500.0 1700.0 
3 R3 1810.0 2430.0 
4 R1 3500.0 1700.0 
5 R3 3110.0 2430.0 
6 R2 2430.0 1800.0 

 
Table 9 NPVs for alternatives at time  for LSM. 

 
The optimal decision policy can be determined by looking back at Table 8 and Table 6, and it is represented by 

Table 10. 
 

Path Data at  Optimal Decision at 
 ( )  ( )    

1 0.18 0.22 Continue Continue Shift 
2 0.18 0.34 Continue Continue Continue 
3 0.13 0.34 Continue Continue Continue 
4 0.13 0.34 Continue Continue Continue 
5 0.18 0.22 Continue Continue Shift 
6 0.13 0.22 Continue Continue Shift 

 
Table 10 Table representation of optimal decision policy solved using LSM. 

 
The optimal ENPV and optimal decision policy solved using the modified LSM are different from the analytical 

solution from the decision tree (Fig. 4) because we used only 6 paths. The accuracy can be improved by increasing 
the number of paths. We increase to 500000 paths and repeat it for 1000 times. This gives a mean of estimated 
optimal ENPV of $2818.03 million, which is almost the same as the analytical solution $2818.00 million, and a 
standard deviation of $0.80 million (which is relatively small). This verifies the accuracy of using the modified LSM 
algorithm to solve the FSRM problem. 

 
Application of the Two-Factor Production Model and the Least Squares Monte Carlo Algorithm 
This section uses a more realistic example to illustrate the application of the two-factor production model and the 
LSM algorithm for analyzing the optimal IOR start time. This example is more complicate than the illustrative 
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example. Thus, a fully structured decision tree cannot be visualized and the problem cannot be solved by simply 
rollback a decision tree. The modified LSM algorithm is therefore of significant use for this example. 

Problem Setting. In the development phase of an oil field, we consider two recovery phases primary and 
secondary recovery. We want to analyze the optimal time of shifting from the primary recovery to the secondary 
recovery and the optimal time of terminating the production (i.e. to identify the optimal life times of primary and 
secondary recoveries). This analysis provides useful insights in how the field should be developed and how the 
leaning over time will impact the decisions. We consider a maximal life cycle of 50 years. The shift can happen at 
the beginning of any year but only once, and the same for the termination. In other words, we need to decide 
whether to continue with the primary recovery, to shift to the secondary recovery, or to terminate the production at 
the beginning of each year from Year 1 to Year 50. 

 The oil production is modeled using the two-factor production model. We assign probability distributions to the 
model parameters based on a priori knowledge to represent the uncertainties in reservoir properties and the effects of 
the primary and secondary recovery mechanism. All the parameters are assumed to be normally distributed and their 
means and standard deviations are in Table 11. The correlation coefficient between the parameters are in Table 12. 

 
Parameter  [fraction]  [years]  [fraction]  [years] 

Mean 0.20 16 0.15 7 
Standard Deviation 0.05 2 0.05 1.5 

 
Table 11 Means and standard deviations for the normal distributions of the production model parameters. 

 
     

 
 1 0.2 -0.7 0.1 

 0.2 1 -0.3 -0.2 
 -0.7 -0.3 1 -0.3 

 0.1 -0.2 -0.3 1 
 
Table 12 Correlation coefficients between the production model parameters. 

 
Because we focus on the geological uncertainty, we assume all the parameters of the economic model are known 

and their values are in Table 13. The capital cost is paid at the beginning of each recovery phase. The cashflow is 
discounted yearly. 

 
Parameter Value Unit 

OOIP 240 million bbl 
Oil Price 55 USD/bbl 

Capital Cost (Primary) 50 million USD 
Capital Cost (Secondary) 50 million USD 
Operating Cost (Primary) 9.1 million USD/year 

Operating Cost (Secondary) 21.1 million USD/year 
Discount Rate 12% yearly 

 
Table 13 Values of economic parameters. 

 
The recovery efficiency is measured at the end of each year and is used to support the decisions. The 

measurement error is assumed to be normally distributed with zero mean and a standard deviation of 0.001. 
Results. secondary recovery, leading to a life 

cycle of 24 years. The corresponding EVWOI is $918.9 million. If we can obtain perfect information on the 
reservoir properties and the effects of primary and secondary recovery mechanisms before the production starts, the 
resulting EVWPI is $1057.6 million. Thus, the VOPI is $138.7 million. This value indicates that the total costs of 
any additional data gathering activity (e.g., conducting a seismic survey), no matter how sophisticated it is, for better 
understanding the reservoir properties or the effects of primary and secondary recovery mechanisms should not 
exceed $138.7 million. The FSRM approach leads to an EVWII of $991.8 million for the measure of recovery 
efficiency. The corresponding VOI is $72.9 million. Therefore, the company should not pay more than $72.9 million 
to buy and install devices for measuring the recovery efficiency. 
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Fig. 14 compares the cumulative density functions (CDFs) of NPVs corresponding to the DWOI, DWII and 
DWPI. We see that the FSRM approach moves the CDF of NPVs corresponding to the DWOI to the right (i.e. the 
NPV increases) because it allows for learning over time. We notice that some realizations (around 5%) end up with 
a smaller NPV with DWII than the NPV with DWOI. The possible reasons are: (1) the downside (e.g., the 
theoretical ultimate recovery efficiency increment turns out to be very small) may show up even though the decision 

future events, and/or (2) a sub-optimal 
decision may be made because the LSM algorithm is an approximation method. The DWPI further moves the CDF 
curve to the right, leading to a higher ENPV than that of the DWOI and DWII. 

 

 
Fig. 14 CDFs of NPVs corresponding to DWOI, DWII and DWPI. 

 
The probability density functions (PDFs) and CDFs of the primary recovery, secondary recovery and total life 

times corresponding to the DWII are in Figs. 15 17 where the DWOI is marked in red. 
Fig. 15 shows that the P10 P90 interval of the primary recovery life time ranges from 1 to 20 years (i.e. there is 

80% chance that the recovery mechanism should be shifted from primary to secondary anytime from Year 1 to Year 
20). This is a wide range. The specific timing of shifting depends on the measure of recovery efficiency. There is 
only 4% chance that it is optimal to 

y of more than 20%. This informs that the facilities for 
the 

company will lose the flexibility , 
which has a chance of about 35% to happen. 

Fig. 16 shows that the P10 P90 interval of the secondary recovery life time ranges from 12 to 22 years. The 18 
 to happen while the most probable (13%) 

secondary recovery life time is 19 years. Besides, there is 40% chance that the secondary recovery life time is 
shorter than 18 years and 48.5% chance longer. 

Fig. 17 shows that the P10 P90 interval of the total life time ranges from 19 to 36 years. This informs that it 
would better to has a license for production up to 36 years and a flexibility to terminate the production or sell their 
contract any time from Year 19 to Year 36. If the license for production lasts only 24 years according to the DWOI, 
the company would have a chance of more than 60% to lose the opportunity of producing longer. 
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Fig. 15 PDF and CDF of the primary recovery lifetime corresponding to the DWII. 

 

  
Fig. 16 PDF and CDF of the secondary recovery lifetime corresponding to the DWII. 

 

  
Fig. 17 PDF and CDF of the total lifetime corresponding to the DWII. 

 
Fig. 18 illustrates the probabilities for different combinations of primary and secondary recovery life times 

corresponding to the DWII. The more probable combinations are primary recovery lifetime for 1 year combined 
with secondary recovery life time for 17 to 23 years. These combinations have a probability more than twice than 
the other combinations. This may because we assigned 16 years to the mean value of  and 7 years to the mean 
value of , which means that the secondary recovery mechanism will recovery oil faster than the primary recovery 
mechanism. Per the NPV calculation, the higher the cash flow is at the early times, the higher the NPV is. Shifting 
primary recovery to secondary recovery at an early time will results in a higher NPV than doing that at a later time. 

The highly probable (>0.5%) combinations can be separated into two groups: (1) small span of primary recovery 
life time (1 2 years) with large span of secondary recovery life time (13 24 years), and (2) small span of secondary 
recovery life time (17 21 years) with large span of primary recover life time (5 17 years). The correlation 
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coefficient between the primary and secondary recovery life time is -0.44. This negative linear correlation is because 
there is a strong negative linear correlation between the theoretical ultimate primary recovery efficiency and the 
theoretical ultimate recovery efficiency increment as assigned in Table 12.7 That is, if the primary recovery can 
already lead to a relatively high ultimate recovery efficiency, then the recovery efficiency increment of the 
secondary recovery will be relatively low (i.e. more effective the primary recovery is, less effective the secondary 
recovery is). Consequently, we can expect a relatively short secondary recovery life time if the data inform us to 
continue with primary recovery for a relatively long time. 
 

 
Fig. 18 Probabilities for different combinations of primary and secondary recovery life times. 

 
 
Discussion 
The two-factor production model is useful and tractable. When it is combined with the LSM algorithm, a fast 
analysis of optimal IOR start time and life time can be realized with the consideration of the impact of future 
information. Although the model is very simple, the analysis provides many useful insights in the decision problem. 
The FSRM solution contains a decision policy, reaction to information, 
rather than a single value of the decision variable. The solutions of this fast analysis can then be interrogated with 
sophisticated simulations if adding details in the production model is deemed to be relevant and material for the 
decisions at hand. 

The LSM algorithm is an approximate dynamic programming method. Its accuracy depends on two factors: the 
number of Monte Carlo samples and how well the regression function approximates the real EV. Because we used 
very many Monte Carlo samples (500000), we believe that the sampling error is negligible. We used a first order 
linear regression function, the simplest form of a regression function. The illustrative example tested this regression 
function and showed that it provided high accuracy. It seems from the results that this regression function performed 
well for the more complex application of the LSM algorithm. Although a more complicated regression function (for 
example, with higher order) can improve the accuracy, we think the simple fist order linear regression function is 
sufficient to extract high quality insight for our problem setting. 

This work focused only on the geological uncertainty represented by the two-factor model parameters. However, 
the uncertainty in economic model parameters can be included by adding these variables into the regression 
function. It is easier to handle the economic variables than the production data.  The economic variables are usually 
assumed to follow a Markov chain. Thus, the EV is conditional on only their most recent value unlike that the EV, 
which is conditional on the full path of the production data. 

We considered only two recovery phases the primary and secondary recovery phases. More recovery phases 
should be included for a more comprehensive analysis of the production life cycle. The inclusion of more recovery 
phases (i.e. introducing more alternatives at each decision point) will require more computational time for the LSM 
algorithm. Generally, the computational time increases exponentially with the number of alternatives. Thus, 
                                                           
7 We assign a negative linear correlation between the theoretical ultimate primary recovery efficiency and the 
theoretical ultimate recovery efficiency increment for illustrative purpose only. The correlation can be any value 
from -1 to 1, depending on reservoir properties, well locations, recovery mechanisms, production strategies, etc.  
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including too many recovery phases may become computationally prohibitive even when a computationally 
attractive production model is used.  
 
Conclusions 
This paper reviewed a useful and tractable model for modeling various recovery phases involved in a life cycle of oil 
production and illustrated the detailed steps of implementing the LSM algorithm to solve a sequential decision-
making problem. 

We demonstrated the value of considering the impact of future information in the analysis of the optimal IOR 
start time. We used an illustrative example to discuss the full structure of the relevant decision problem. Although 
the state-of-the-art reservoir management approach CLRM can lead to larger EV than the case without 
considering the impact of information, its solution may be sub-optimal. It is because it considers only the 
information obtained before a decision is made but not the information obtained after that decision. The optimal 
solution can be guaranteed using the FSRM approach. 

A more realistic example demonstrated the application of the two-factor model and the LSM algorithm. The 
results showed that the FSRM approach can significantly improve the decisions and leads to a significant increase in 
ENPV. The resulting decision policy represents the optimal action a decision maker should take according to his/her 
observation. 

We conclude that using the two-factor model and the LSM algorithm can, with limited computation resources, 
provide useful insights in the problem of deciding the optimal IOR start time. 
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Abstract 
The oil and gas (O&G) industry spends billions of dollars on data (e.g., production data, seismic data and tracer 
data) gathering and analysis for the purpose of reducing uncertainty and improving their understanding of the most 
salient features of the subsurface. Yet, the O&G industry spends minimal effort and investment to assess whether the 
benefit of this data gathering and analysis exceeds the cost. One form of data gathering and analysis is history 
matching (HM), which has been an essential reservoir management tool for decades. This paper addresses the value 
of HM by applying the value-of-information (VOI) framework originally developed in the decision sciences. 

There are several challenges involved in assessing the VOI in the HM context. Although reservoir management 
(HM and production optimization) and decision analysis (DA) use many of the same methods, the two domains 
involve different terminology used in fluid flow modeling and application of state-of-the-art HM and optimization 
methods. Furthermore, most applications of VOI analysis have focused on static, as opposed to time-dependent, 
analysis. Finally, some recent publications in the O&G industry that have illustrated and discussed VOI from HM 
have not been consistent with the original definition of VOI. 

In this paper, we illustrate and discuss the use of a consistent, DA-based, VOI analysis framework to assess the 
VOI in HM contexts. In order to make the VOI framework understandable and accessible to both the reservoir 
management and DA communities, we provide a terminology used in VOI 
calculations and that used in state-of-the-art HM and optimization methods.  

The paper includes four VOI analysis examples. The first illustrates the implementation of the general VOI 
framework for a simple HM problem. The second illustrates and discusses the difference between the calculations 
presented by other authors and the standard VOI definition used in the DA community. The third illustrates the 
implementation of VOI calculations in more realistic settings, including a sensitivity analysis of measurement noise. 
The fourth illustrates the application of VOI assessment in a case where a reservoir simulation model is involved. 
 
Introduction 
Petroleum engineers and geoscientists involved in reservoir management continually e  
aim of improving decision mak  acquisition broadly defined here, to cover such activities as 
acquiring data, performing technical studies, hiring consultants, and performing diagnostic tests. In fact, other than 
to meet applicable regulatory requirements, the main reason for collecting any information or doing any technical 
analysis should be to make better decisions. The fundamental question for any information-gathering process is then 
whether the likely improvement in decision making is worth the cost of obtaining the information. This is the 
question that value-of-information (VOI) technique is designed to answer. 

VOI analysis is an a priori1 analysis that evaluates the benefits of collecting additional information before one 
actually gathers the data and makes a decision. Such information gathering might be worthwhile if it could change 
the decision that would have been made without further information. Although many engineers and geoscientists 
tend to believe that more information or data is always better, VOI assigns 

 is added by enabling the deci
to the underlying uncertainty. Thus, information value is forever an entanglement of uncertainty and decision 
making; one cannot value information outside of a particular decision context (Bratvold et al. 2009). 

                                                           
1 A priori  mean before the data are gathered and interpreted . 
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The concept of VOI2 originates from the decision analysis (DA) community. Schlaifer (1959) was the first to 
define VOI in the context of business decisions. Other early references to VOI analysis can be found in Raiffa and 
Schlaifer (1961) and Howard (1966). Its use has been documented in wide areas of real-world application, from 
nuclear waste storage assessment (Eppel and von Winterfeldt 2008) to biosurveillance (Willis and Moore 2013). 
Grayson (1960) introduced this concept in the oil and gas (O&G) industry. Bratvold et al. (2009) presented the 
definition of VOI as well as an overview of its use in the O&G industry. Eidsvik et al. (2015) provided a more 
recent exposition of VOI in the earth sciences. 

Although it is more than half a century since the VOI concept was first introduced in the petroleum literature, it 
has seen limited use in the O&G industry. Most of the published papers that discuss and apply VOI analysis focus 
on common exploration and development decisions, and most of these applications focus on static, as opposed to 
time-dependent, analysis. Only recently has the concept been discussed in the context of history matching (HM) 
which involves data gathered at different times (Barros et al. 2015a, 2015b, 2016a). 

HM has been an essential reservoir management tool for decades. Originally, HM referred to the adjustment of 
the production model parameters to reflect the historical production data (rates and pressures) as closely as possible. 
Today, the term HM is often used in a broader context and includes model calibration3 using any relevant data and 
information (seismic data, log data, tracer behavior, etc.). Once the measured data have 
is used to generate possible future production profiles and their probabilities; i.e., the future production uncertainty, 
and thus support reservoir management decisions.  

With the increase in available computing power over the past several decades, numerical techniques for model-
based optimization of subsurface hydrocarbon production have evolved rapidly. The traditional manual approach to 
HM has in many companies been replaced by automatic or semi-automatic approaches based on robust and efficient 
numerical algorithms that allow for the inclusion of geological and petrophysical uncertainties. A particularly 
promising method for HM is the ensemble Kalman filter (EnKF) approach introduced by Evensen (1994). EnKF is 
based on a Bayesian approach where data is used to quantify geological and petrophysical uncertainties, ensuring 
consistency in the updated probabilities. The resulting production forecast captures these uncertainties and provides 
possible production scenarios with associated probabilities; i.e., the uncertain future production.  

Although operators in the O&G industry commit significant effort and cost to calibrating their production 
models, few publications have discussed the a priori value of gathering the data and conducting the calibration. The 
usefulness of information from HM has been quantified in terms of uncertainty reduction (Le and Reynolds 2014) or 
by the fraction of information extracted from the measured data (Krymskaya et al. 2010). However, neither concept 
constitutes an information valuation approach as defined by the DA community, nor is either of them an a priori 
assessment of the value of the information.  

Barros et al. (2015a, 2015b, 2016a) proposed a workflow to assess the VOI in the HM context using ensemble-
based4 HM and optimization methods, and later on, Barros et al. (2016b) applied clustering techniques to speed up 
the previous workflow. Although they have considered the impact of additional information on decision making, the 
VOI assessed through their workflow is conceptually inconsistent with the definition of VOI as it will be discussed 
later. Furthermore, they employed terminology and notation that differ significantly from those commonly used in 
VOI analysis. Indeed, the work by Barros and co-authors is one of the few to claim the use of decision analytic 
methods to assess VOI in the context of HM. Their workflow mimics in the best possible way the decision process 
that will happen during reservoir management, but their work is lack of the DA touch and the clarity about why the 
value they are calculating is VOI. It is important not only to show how the VOI should be assessed but also to 
illustrate and discuss whether or not their approach is providing the VOI from HM. In this paper, we refer to their 
workflow (particularly, the workflow introduced in Barros et al. (2015a) s workflow. Since transparency 
is a key feature of DA community, we try to 

, and to s 
, and then 

s workflow. 
The main contributions of this paper are three-fold. First, we illustrate how VOI analysis can be applied to assess 

the information value of gathering production data and performing HM. This requires reconciling the terms used in 
VOI analysis versus those in state-of-the-art HM methods, especially EnKF for HM.5 Second, we discuss the 

                                                           
2 This paper -of-i as the term is understood in the DA community.  
3 . We will use 

 
4 An ensemble means a set of realizations. 
5 Some of the terminology used in EnKF also appears in other approaches to HM in the O&G industry.  
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differences and similarities between the analysis suggested by Barros et al. (2015a) and VOI analysis. Finally, we 
present four VOI analysis examples: the first is illustrating the calculation steps of VOI analysis on a simple HM 
case with the use of decision trees; the second illustrates the use of EnKF with a static model whose corresponding 
VOI can be calculated analytically; the third uses a decline curve based dynamic model to illustrate a practical case 
where EnKF combined with robust optimization (RO) is used to calculate the VOI from HM, followed by a 
sensitivity analysis of the measurement noise the sensitivity analysis provides a means for illustrating the two VOI 
extremes: value of perfect information and the case where the information provides no value; and the fourth uses our 
proposed workflow in a more realistic case where a reservoir simulation model is involved. 

Following this introduction, we first clarify the distinction between VOI analysis and terminal analysis and then 
specify the definition of VOI and present the general steps in VOI assessment. Next, we briefly review EnKF and 
RO. Thereafter, we propose a procedure for assessing the VOI in HM contexts using ensemble-based methods, 
which is compared and co s workflow. The implementation of VOI analysis is then illustrated in 
a decision-tree example and three Monte Carlo examples. Finally, we present a discussion and conclusions. 

 
Value-of-Information Analysis versus Terminal Analysis 
Bratvold et al. (2009) identified several papers in the O&G literature that present cases where the information value 
is calculated after the information has been gathered. This might take the form of historical lookbacks to document 
the impact of the information (Aylor 1999; Waggoner 2000). Raiffa and Schlaifer (1961) called this terminal 
analysis.  Terminal analysis involves the evaluation of and choice among alternatives after a test (actual or 
hypothetical) has been conducted and the data gathered, whereas VOI analysis (which Raiffa and Schlaifer (1961) 
called pre ) considers the decision problem as it appears before a test has been conducted. 6 

Fig. 1 illustrates the stages of VOI and terminal analysis. Fig. 2 depicts the decision-tree elements of VOI 
analysis versus terminal analysis, where the circles represent uncertainty nodes and the squares represent decision 
nodes. The data of concern in VOI analysis (Fig. 2a) are future data, therefore unknown and treated as uncertain. In 
contrast, the data of concern in terminal analysis (Fig. 2b) are historical data, therefore already known and treated as 
certain. 

 
(a) VOI Analysis 

 
 (b) Terminal Analysis 

 

 

 

 
 

Fig. 1 Stages of (a) VOI analysis, and (b) terminal analysis. 
 

(a) VOI Analysis    (b) Terminal Analysis 

 

   

 
 

Fig. 2 Decision-tree elements of VOI analysis versus terminal analysis. 
 
Although it might be deemed valuable to conduct terminal analysis, it is not a replacement for VOI analysis. 

Furthermore, it introduces a bias for two reasons. First, from a communication and publishing perspective, there is a 
strong incentive not to publish or communicate unsuccessful (in the sense of not being able to demonstrate any value 
creation) information gathering activities. Second, it ignores cases in which information was not gathered, but 
should have been.  

See Thomas et al. (2016) for a detailed discussion of how terminal analysis can be applied to historical 
production data. 
 

                                                           
6 Another case, which might be called, "post-hoc analysis," is where information is valued after the data have been gathered and 
the decision has been made (e.g., Coopersmith et al. 2006). 

( ) y ( ) y
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Value-of-Information (VOI) Analysis 
HM is the process of acquiring information through updating uncertain model parameters on static and dynamic 
data. The aim of acquiring information is to improve hydrocarbon production-related decision making. This raises 
the question of whether the likely improvement in decision making is worth the cost of obtaining the information. 
Because VOI analysis is designed to answer this, it is useful in the design phase in deciding whether a certain type 
of data should be gathered for HM. VOI analysis considers a series of actions: data gathering, updating our beliefs 
based on the gathered data (in our specific case, this is done by model parameter updating through HM), and using 
the updated beliefs for decision making. If any one of these actions is missing, there will be no point in doing VOI 
analysis. 

VOI analysis is concerned with two fundamental uncertainties: (1) the uncertainties we hope to learn about but 
cannot directly observe, which we call the distinctions (or events) of interest; and (2) the test results, referred to as 
the observable distinctions (Bratvold et al. 2009). In reservoir management, the distinction of interest is future 
production after time  and the observable distinction is the data gathered until time . Future production is predicted 
using a dynamic model (e.g., a decline curve model or a reservoir simulation model) with uncertain model 
parameters and assuming that once we have established values for these parameters, the dynamic model itself will 

Therefore, the observed data until time  is the observable distinction which is 
used to establish values for the uncertain model parameters and the distinctions of interest we actually work on are 
the uncertain model parameters. For a given set of uncertain model parameters, the future production is a 
deterministic calculation. 

The remainder of this paper uses VOI terminology. Table 1 lists terms common in VOI analysis, along with the 
corresponding terms used in HM and optimization. 

 

 
 
Table 1 Correspondence between terms used in VOI analysis and those used in model calibration and optimization. 

 
The VOI is defined as the most that the DM should pay for additional information on the distinctions of interest. 

If the DM is risk neutral, then7 
 

 

                                                           
7 This is not the general definition of VOI. This equation is true only if the decision maker is risk neutral or is risk-averse with an 
exponential utility function (Bratvold et al. 2009). 
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If the additional information is perfect (i.e., the information reveals the truth), we refer to the VOI as the value-

of-perfect-information (VOPI) or the value-of-clairvoyance (VOC). No test, no matter how sophisticated, can be 
worth more than the VOPI (Bratvold et al. 2009). In the context of HM, obtaining perfect information is usually 
precluded by model noise8, measurement noise, or non-uniqueness of inverse modelling. 

In mathematical form, 
 
  (1) 
  (2) 
 
where  is the expected value (EV) without additional information and  is the EV with additional 
information. The lower bound of VOI is always 0 , one can always 
choose to not gather the information. VOI is an indicator of the maximal buying price or cost of an information 
gathering activity. If the VOI is greater than the cost, the DM should gather the information; otherwise, he/she 
should not do so. 

In a decision making context, the decision without information (DWOI) is the alternative that optimizes EV over 
the prior, and the EVWOI is the optimal EV over the prior, i.e.,  
 

  (3) 

  (4) 

 
where  is an alternative from the decision space ,  is the DWOI,  is the distinctions of interest,  is the 
value function that assigns a value to each alternative-outcome pair for a given , and  is the prior probability 
distribution of . Similarly, for given observations, the decision with information (DWI) is the alternative that 
optimizes EV over the posterior, i.e., 
 

  (5) 

  (6) 

 
where  is the DWI given observations ,  is the posterior probability distribution (i.e., the probability 
distribution of the model parameters given the observations), and  is the optimal EV over the posterior. The 

 
 

  (7) 

 
where  is the likelihood function that encodes the reliability of model calibration, 9   is the joint 
probability distribution, and  is the preposterior probability distribution calculated as 
 

  (8) 

 
 
Then, the EVWI is  

                                                           
8 By 
we have to treat it as a random process. The lower the model noise, the better that the model represents the reality, and the more 
reliable the model is. In reservoir management, the model noise is usually ignored. 
9 The reliability of model calibration includes the reliability of the model, the reliability of the measurements, and the non-
uniqueness of inverse modelling. 
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  (9) 

 
Eq. 9 can be rewritten as 
 

 
 

(10) 

 
where  denotes a joint space of  and , and  stands for the integration over all combinations of  
and . The expressions in Eqs. 1 10 do not show explicitly the time-dependent components. Each component of the 
decision vector  is a function of all the observations available at the time of evaluating the decision. Refer to 
Bellman equation for a complete expression for a time-dependent system (Eidsvik et al. 2015). 

draw the inference, so it is assumed that the prior accurately reflects the uncertainty about the distinction of 
interest and that the likelihood function correctly indicates the strength of the evidence from the model calibration. 

The general workflow of VOI analysis is illustrated in Fig. 3. The main steps of VOI analysis are (1) to identify 
the DWOI (Eq. 3) and calculate the EVWOI (Eq. 4); (2) to conduct Bayesian inference (Eq. 7), identify the DWI 
(Eq. 5) and calculate the EVWI (Eq. 9 or 10); and (3) to calculate the VOI (Eqs. 1 and 2). 

EVWI can be calculated using either Eq. 9 or Eq. 10. In Formulation 1 (F1) (Eq. 9), the optimal EV over the 
posterior is first calculated by integrating over all possible distinctions of interest given observations, and the EVWI 
is then calculated by integrating over all possible observations. In Formulation 2 (F2) (Eq. 10), EVWI is calculated 
by integrating over all possible combinations of the distinctions of interest and the observations. Mathematically, 
these two formulations give the same value of EVWI. However, when Monte Carlo methods are used, the EVWIs 
calculated using these two formulations might be very different, leading to different VOI estimates. This will be 
further discussed later. 

 

 
 

Fig. 3 General workflow of VOI analysis. 
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There are two essential operations in VOI analysis: Bayesian inference (i.e., calculating the posterior probability 
distribution) and decision making (i.e., identifying the optimal strategy). Reservoir management decision problems 
that involve continuous probability distributions and continuous decision spaces require methods other than decision 
trees for these two steps. EnKF for Bayesian inference and RO for decision making from closed-loop reservoir 
management are more appropriate methods for building a VOI analysis environment in HM context (Barros et al. 
2016a). The following sections will briefly present these two methods. 
 
Bayesian Inference with Ensemble Kalman Filter (EnKF) 
EnKF was introduced by Evensen (1994) as a means to conduct Bayesian inference (Eq. 7) using Monte Carlo 
methods. The prior probability distribution is represented by a set of realizations of model parameters (i.e., the prior 
or initial ensemble). The posterior probability distribution is represented by the updated realizations of model 
parameters (i.e., the posterior or updated ensemble), which are obtained by (Burgers et al. 1998) 
 
  (11) 
 
where matrix  consists of the vectors containing the updated states,10 updated model parameters, and updated 
observations corresponding to each realization in the posterior ensemble; matrix  contains the predicted states by 
forward modelling, model parameters, and predicted observations by forward modelling corresponding to each 
realization in the prior ensemble;  is the Kalman gain matrix, which weighs the influences of the prior predicted 
observations and the real-time observations (i.e., measurement data);  is a matrix containing the perturbed 
observations; 11  and  is an operator that links  to the predicted observations. Eq. 11 describes a linear 
combination of the prior and the observations. The Kalman gain matrix  is calculated as  
 
  (12) 
 
where  is the covariance matrix of  encoding the covariance matrix of the prior predicted observations, and  
is the covariance matrix of the observations. As the measurements become noisier (i.e., the variance of an 
observation increases) and/or the variance of a prior predicted observation decreases, more weight is given to the 
prior; otherwise, more weight is given to the observations. 

The EnKF embodies the prior in , the likelihood in  (when the model noise is ignored), and the posterior in 
; and the preposterior is a norm

among the prior, the likelihood, the preposterior, and the posterior is no longer shown explicitly as in Eq. 7, but is 
implicitly included in Eq. 11 and 12. A detailed description on the relationship between the formulation of Kalman 
filter and Bayesian formulation can be found in Meinhold and Singpurwalla (1983). In our case, the inputs of EnKF 
are the initial guess of the model parameters (i.e., the prior ensemble) together with a model that can predict both the 
production and observations given a production strategy, observations, and their associated statistics; and the output 
is the EnKF updated model parameters (i.e., the posterior ensemble). Using EnKF conducted 
implicitly. 

For a comprehensive introduction to EnKF, refer to Evensen (2009). Aanonsen et al. (2009) provided an 
extensive review of the application of EnKF in reservoir engineering. 
 
Decision Making with Robust Optimization (RO) 
The purpose of HM, and any other information gathering activity, is to acquire information with the aim of 
improving decision making. This generally requires explicit modeling of the decisions affected by the information 
obtained from the calibration. This section considers how to optimize the decisions of what water injection strategy 
to employ. The variables control water injection rates are commonly referred to as the control variables. 

The goal of applying RO approach to water injection is to find an optimal strategy (i.e., a set of decisions) that is 
robust to geological uncertainties (Van Essen et al. 2009). A commonly used measure of the value of a hydrocarbon 
production project is net present value (NPV). We consider only the revenues from oil production and the costs of 

                                                           
10 Given a dynamic system, a state is an unobservable (in most cases) quantity that must be known currently in order to predict 
the system behavior (i.e., the future state). A state can be a scalar or a vector.  
11 When EnKF is used, an observation has to be perturbed with its corresponding statistics in order to avoid insufficient variance 
(Burgers et al. 1998). 
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water injection and production for a waterflooding case. The NPV for a single geological realization can be 
calculated by 

 

  (13) 

 
where  is the value function for decision making;  is a vector of uncertain model parameters for a geological 
realization;  is a vector of control variables (i.e., an alternative);  is the number of time steps;  is the index for 
time step; the subscripts , , and  denote oil, water production, and water injection, respectively;  is the 
injection or production rate over time step length ; , , and  are the oil price, water production cost, and 
water injection cost, respectively;  is the discount rate;  is the cumulative time for discounting; and  is the 
reference time for discounting. For a risk-neutral DM, the objective function for RO is 
 

  (14) 

 
where  is the EV of the value function over all realizations,  is the index of a realization, and  is the number 
of realizations (i.e., the ensemble size). The objective of RO is thus to find an optimal  that maximizes the expected 
NPV over an ensemble of geological realizations. 

For computationally attractive models, the FMINCON-function of MATLAB® (2014) can be used to solve the 
RO problem. For computationally intensive models, such as a grid-based finite difference or finite element model, 
ensemble-based optimization approaches such as the EnOpt (Chen et al. 2009) are commonly used to significantly 
reduce the number of reservoir simulations required for RO and hence reduce the computational costs. 

 
VOI Analysis Using Ensemble-based Methods 
In ensemble-based methods, a probability distribution is represented by an ensemble, which is a set of realizations. 
Each realization in the ensemble (i.e., an ensemble member) is equi-probable with a probability of . This is far 
more tractable than it would be to weight all possible values according to the probability distribution. 

The workflow of VOI analysis using ensemble-based methods is illustrated in Fig. 4. This workflow is a 
modification of the general VOI analysis workflow shown in Fig. 3. The difference between Figs. 3 and 4 is that the 
probability distribution appears in Fig. 3 are represented by ensembles in Fig. 4. 

 



Value-of-Information for Model Parameter Updating through History Matching 9 

 
 

Fig. 4 Workflow of VOI analysis using ensemble-based methods. 
 
The prior probability distribution  is represented by the prior ensemble [ , ,  ], which consists of 

the realizations drawn from .  
The likelihood function  is assessed through a measurement noise distribution. A dynamic system with 

model and measurement noise involves the following mathematical relationships: 
 

  (15) 
  (16) 
  (17) 

 
where the subscript  is the index of time,  is a vector of the states,  is a vector of the model noise at time , 

 is a function that describes the relationship between current states  and future states  given uncertain 
parameters  and control variables  for the period between time  and ,  is a vector of predicted 
observations at time ,  is a function that describes the relationship between states and predicted observations, 

 is a vector of observations (with measurement noise) at time , and  is a vector of the measurement noise at 
time . Combining Eq. 15 and Eq. 16 yields 
 
  (18) 
 
where  denotes a forward model that embodies  and ,  is a time-series of control variables from time 
0 to time ,  is the initial state, and  encodes the model noise  from time 0 to time . If  is uncertain, it 
can be included in ; if it is certain, it can be included in . Thus, Eq. 18 can be simplified to  
 
  (19) 
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For example, when using EnKF together with a reservoir simulation model, standard practice is to assume that the 
model is accurate (i.e. ) and to assign a multivariate Gaussian distribution to  with zero mean and a 
diagonal covariance matrix  (i.e., ); this yields  and 

, where  is referred to as the reliability of the model and  as the reliability 
of measurements, thus . Therefore, as long as the model and measurement noise are 
assessed and a forward model is given, the likelihood function can be calculated. 

The realizations representing the preposterior probability distribution (i.e., the realizations of observations) can 
be generated by Monte Carlo simulation: (1) sample a realization of the uncertain model parameters  from  
(i.e., the same as generating a realization in the prior ensemble), (2) conduct forward modelling (Eq. 19 with  
if the model noise is ignored) with  to time  to obtain a realization of the predicted observations , (3) sample a 
realization of the measurement noise  from , (4) add  to  (Eq. 17) to obtain a realization of 
the observations with noise , and (5) repeat (1) (3) to obtain a set of , [ , ], which represents 
the preposterior. Moreover, the realizations of ( , )-pairs [ , , ] represent the joint 
probability distribution . In this specific case, we use a 1:1 ratio between  and , i.e., for a given , only 
one realization of is drawn from . One can alternatively use a 1:  ratio, i.e., for a given ,  
realizations of  are drawn from . This results in a set of  with a total of  realizations [ , , 

] and a set of ( , )-pairs with a total of  realizations [ , 
, ]. Using a 1:1 ratio is a 

simplification that can lead to inaccuracies in the VOI estimate. However, using a 1:  ratio requires  times more 
Monte Carlo samples,  times increasing the computational cost for the EVWI calculation accordingly. In practice, 
the measurement noise tends to be quite small (i.e., the standard deviation of  is small compared to that of the 
prior prediction); thus, a 1:1 ratio suffices. 

The posterior ensemble [ , ] representing the posterior probability distribution  is 
generated by using EnKF to update the prior ensemble with the given observations and assessed measurement (and 
model) noise. 

With all the probability distributions represented by their corresponding realizations, the VOI analysis can be 
conducted following the steps presented earlier. The following equations omit the time index  for convenience. 
First, we identify the DWOI and calculate the EVWOI. Converting Eqs. 3 and 4 into their corresponding Monte 
Carlo forms gives 

 

  (20) 

  (21) 

 
Second, we conduct Bayesian inference, using EnKF to calculate the posterior ensemble members and identify the 
DWI for the given observations, using the Monte Carlo form of Eq. 5, 
 

  (22) 

 
Again, the EVWI can be calculated using either of two formulations: the Monte Carlo form of F1 (Eq. 9), 
 

  (23) 

 
or the Monte Carlo form of F2 (Eq. 10), 
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  (24) 

 
Based on the law of large numbers, Eqs. 23 and 24 give the same limit when the ensemble size  approaches 
infinity. However, the convergence rate can be different, resulting in different estimates when the ensemble size is 
small. More details on this will be presented with an example later. Finally, we calculate VOI using Eqs. 1 and 2. 

Care must be taken when calculating EVWOI and EVWI. If a production optimization problem entails 
sequential decision making; i.e., the alternative  consists of a series of decisions, only the value corresponding to 
decisions that can be affected by the observations should be considered. For example, if decisions  and  will be 
made sequentially at time  and , respectively, then an observation obtained somewhere between time  and 

 will affect only  and not ,. Therefore, when calculating the value of this observation, only the NPV 
corresponding to the period from time  forward should be considered. 

 
Comparison with s Analysis Workflow  
Barros et al. (2015a) proposed a workflow for calculating VOI from HM using ensemble-based methods. The 
authors have extensive experience in reservoir management. However, their paper did not elaborate on the 
connection between the workflow they have applied and the definition of VOI. This section seeks to accomplish 
that.  

s workflow is based on a twin experiment where the DWI and DWOI are valued based on a synthetic 
truth and where the difference between the values corresponding to the DWI and DWOI, respectively, is calculated. 

s workflow is a realization drawn from the prior probability distribution.  realizations 
are first drawn from the prior probability distribution, and one of them is then chosen as a synthetic truth and the rest 
form the prior ensemble with   realizations. The procedure of conducting a twin experiment is repeated for all 

 synthetic truths. For each synthetic truth, there is a corresponding difference between its values corresponding to 
the DWI and DWOI. Barros et al. then calculated the VOI as the EV over all of these differences associated with 
synthetic truths. Thus, in Ba s workflow, the concept of synthetic truth is central to the analysis.  

However, synthetic truth  has no meaning in VOI analysis. In reservoir engineering, a 
synthetically true model is used to mimic the actual state of a reservoir, by which reservoir engineers can investigate 
whether the actual outcome falls within the range that was predicted by updated models. This is not the case of VOI 
analysis where the importance is to quantify uncertainty and how the changes in uncertainty will change decisions. 
Moreover, VOI as defined by Barros et al. implies a distribution.12 However, as shown by Bratvold et al. (2009), the 
VOI is not a distribution but s workflow is inconsistent 
with the definition of VOI analysis. However, two small modifications to s workflow can address this. 

prior.13 Therefore, the first modification is to not exclude any synthetic truth from the prior ensemble. Because the 
VOI is defined as the difference between the EVWI and EVWOI, the second modification is to calculate the VOI by 
first calculating the EV over the values of the DWIs valued on the synthetic truths and the EV over the values of the 
DWOI valued on the synthetic truths, and then calculating the difference between these two EVs instead of by first 
calculating the difference between the values of DWI and DWOI valued on a synthetic truth, and then calculating 
the EV over the synthetic truths. Although the second modification is only formula rewriting and causes no 
difference in mathematical result, it makes conceptual difference. s workflow is identical to 
calculating the VOI using F2. Because F2 is derived without introducing the concept of synthetic truth, there is no 
need to include the concept of synthetic truth in VOI analysis. 

r engineers, whilst F2 is from the original definition of VOI. 
 similarity of it to F2 provides 

an easier understanding of the VOI from HM for reservoir engineers. 
The differences among F1, F  are summarized in Table 2. The impact of using the 

three approaches will be illustrated and discussed later. 
 
 
 

 
                                                           
12 Barros et al. (2015a, 2015b, 2016a) illustrated the percentiles of VOI. 
13 As is common in VOI analysis, this work assumes that the probability assessors are unbiased. 
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Index Formulation 1 Formulation 2 Barros et al. 

1 

DWOI is identified and 
EVWOI is calculated over all 

 prior realizations (Eqs. 20 
and 21). 

DWOI is identified and 
EVWOI is calculated over all 

 prior realizations (Eqs. 20 
and 21). 

DWOI is identified by optimizing the EV 
over  prior realizations after a 
synthetic truth is excluded. The DWOI is 
valued on the synthetic truth, i.e., value 
without information for the synthetic truth 
( ) is calculated. This procedure is 
repeated for all synthetic truths. 

2 
All  prior realizations are 
updated, resulting in  
posterior realizations. 

All  prior realizations are 
updated, resulting in  
posterior realizations. 

 prior realizations are updated, 
resulting in  posterior 
realizations. 

3 
DWI is identified over  
posterior realizations (Eq. 
22). 

DWI is identified over  
posterior realizations (Eq. 
22). 

DWI is identified over  posterior 
realizations. 

4 EVWI is calculated using Eq. 
23. 

EVWI is calculated using Eq. 
24. 

The value with information for each 
particular synthetic truth ( ) is 
calculated. 

5 
VOI is calculated as the 
difference between EVWI 
and EVWOI. 

VOI is calculated as the 
difference between EVWI 
and EVWOI. 

The VOI for each synthetic truth ( ) is 
calculated as , and 
the VOI is calculated as the EV of . 

 
Table 2  
 
Decision Tree Example 
The following is a simple illustration of how decision trees can be used to assess the VOI in the HM context. For an 
introduction to decision trees and tree flipping, refer to Clemen (1991), Bratvold and Begg (2010), and Howard and 
Abbas (2016).  

Assume that the prior has been assessed as three equi-probable sets of uncertain model parameters of a given 
production model: ,  , and . We want to estimate the value of measuring and calibrating to the oil production 
rate at time . The predicted oil production rates  by these three realizations are shown in Fig. 5, where  is the 
oil production rate predicted for the period from time 0 to , which is obtained from the production model  with 
parameters  and production strategy . It is assumed that there is no model noise. For example, if  describes the 
true nature of the reservoir,  is the production strategy and there is no measurement noise, the observed oil 
production rate will definitely be  at time  (i.e., any given set of values of model parameters  maps to only one 
set of predicted observations a one-to-one relationship). Thus, we have the following model reliabilities: 

 else 0. However, the relationship from predicted observations to model 
parameters might not be one-to-one, because of non-uniqueness of inverse modelling. For example, given , the 
corresponding set of model parameters can be either  or . The reliabilities of the measurements are listed in 
Table 3. For example, given the oil production rate is low ( ), the probability of the measurement providing an 
exact ) is 4/5 and that of a deviated ) is 1/5. Given the reliabilities of the model 
and measurements, we can calculate the likelihoods. For example, 

. The likelihood function 
is listed in Table 4. The preposterior and posteriors are calculated using Eq. 8 and 7, respectively. 
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Fig. 5 The oil production rate profiles of three equi-probable realizations for the decision tree example. 

 
Reliabilities of Measurement 

(says|is) 
Given  at time  is  
Low ( ) High ( ) 

at time  says 
) 4/5 1/5 
) 1/5 4/5 

 Total 1 1 
 

Table 3 Reliabilities of measurement for the decision tree example. 
 

Likelihood Function 
(says|is) 

Given the set of model parameters is  
   

at time  says 
( ) 4/5 4/5 1/5 

) 1/5 1/5 4/5 
 Total 1 1 1 

 
Table 4 Likelihood function for the decision tree example. 

 
Fig. 6a shows the probability tree with the prior and likelihoods in the assessed form. Its corresponding 

inferential form (flipped tree) is shown in Fig. 6b, where the preposterior and posteriors are listed. 
 

(a) Assessed Form: Information we have (b) Inferential Form: Information we need 

 
 

Fig. 6 The uncertainty trees in (a) assessed form, and (b) inferential form for the decision tree example. 
 
Because information cannot add value if it is not material, we must define the decision context before the VOI 

can be calculated. This example will assume that we can choose one of three production strategies, denoted by , 
 and , that the strategies are the same for the time interval through , and that they differ for the remaining 

period. Thus, we have two options: (1) to choose from ,  and  based on the prior (i.e. the case without 
information), and (2) to measure the oil production rate at time  and then, to choose from ,  and  based on 
the measurement (i.e. the case with information). Let  be the NPV of the project for the period from time  to 
the end of the production life-cycle, calculated with realization  and decision . The NPVs for different alternatives 
and realizations are listed in Table 5. The decision trees for the cases with and without information are shown in 

( )
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Fig. 7, where the triangles represent payoffs or values. These trees show only the branches for the optimal decision, 
i.e., the alternative that maximizes the expected NPV. Recall that the VOI is assessed before any information is 
gathered. The decision tree in Fig. 7b includes the observation uncertainty to the left of the decision nodes. 

 
    

 89 56 49 
 73 64 65 
 75 6 88 

 
Table 5 NPVs for different alternatives and realizations [$ millions] for the 
decision tree example. 

 
(a) Without Information (b) With Information 

 

 
Fig. 7 The decision trees for the cases (a) with information, and (b) without information for the decision tree example. 

 
As shown in Fig. 7a, the DWOI is , the EVWOI is $67.3 million, and the EVWI is $70.8 million. The EVWI 

can be calculated using either F1 (Eq. 9): 
 

 

 

 

 
or F2 (Eq. 10): 
 

 
 

 
 
The VOI is $70.8  $67.3 = $3.5 million. If the cost of measurement is greater than $3.5 million, the measurement 
of oil production rate should not be conducted; otherwise, the oil production rate should be measured. The value 
increment of $3.5 million comes from the possible change in DWI. The optimal decision is alternative  for the 
case without information, whereas it is  ) or  if the measurement says 

). If irrespective of the information,  is retained for the decision nodes in Fig. 7b, this will yield 
 and thus , which means that the information has no value if it cannot change our 

decision. 
The VOI of the case without noise in  measurement (i.e., , else 0) is $10.4 

million. The VOI of the case with perfect information (VOPI) is $13.0 million. The VOI increment from $3.5 
million to $10.4 million is due to the elimination of measurement noise. The difference between the VOI without 
measurement noise ($10.4 million) and VOPI ($13.0 million) is because having  data does not provide perfect 

( )
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information about the future production even though the  data have no noise. This imperfection can be ascribed to 
the non-uniqueness of inverse modelling. If a given dataset mapped to only one set of model parameters (i.e., 

 for all ), then the dataset would provide perfect information. 
 
Monte Carlo Example with a Static Model 
Assessing the VOI for the example above is straightforward because it is a discretized case having a single 
uncertainty with only three possible outcomes. In practice, many hydrocarbon production relevant decision making 
contexts involve continuous probability distributions (e.g., an uncertain permeability field can be a multivariate 
Gaussian distribution). Monte Carlo method uses a number of equi-probable realizations to represent a continuous 
probability distribution. A disadvantage of Monte Carlo method is that it can result in sampling errors, which could 
for example cause the EVWIs calculated using F1 (Eq. 23) and F2 (Eq. 24) to differ. This section presents an 
example where a simple static model is used so that the VOI can be easily calculated analytically. This VOI will 
then be compared with those s workflow, F1, and F2. 

Consider that the distinction of interest  is the revenue of a project and that the observable distinction  is the 
information on the revenue. The relationship between  and  is  
 
  (25) 
 
where  is normally distributed with mean  and standard deviation , and  is normally distributed with zero mean 
and standard deviation : the prior  and the likelihood . The error term in Eq. 25 
describes the reliability of the information. Using the relationships for the normal conjugate prior, the preposterior is 

 and the posterior is . The decision  to be 

made is whether the project will be conducted;  and  
respectively. If the expected revenue is positive, the project should be conducted; otherwise, it should not. Thus, the 
value function is . The DM wants to know whether the information should be obtained against a cost of 
1 (the monetary unit can be arbitrary here). 

The VOI for this case can be calculated analytically: 
 

  (26) 

 
With , , and , the VOI is 2.267. Because the cost of information is lower than the VOI, the DM 
should buy the information. 

For comparison, we use Monte Carlo method to calculate the VOI. First, we sample  realizations from the 
prior  to get the prior ensemble [ , ], with the probability of each  being . Second, the DWOI 
is obtained using Eq. 20, and the EVWOI is calculated using Eq. 21. Third, for each , we sample one realization 
from the likelihood  to get the preposterior ensemble [ , ], with the probability of each  being 

 as well as an ensemble of ( )-pairs,  [ , ], with the probability of each ( , )-
pair being  (the 1:1 ratio mentioned earlier applies here). Fourth, we update the prior ensemble using EnKF for 
each , yielding the posterior ensemble [ , ], and we identify the DWI using Eq. 22; this results 
in  posterior ensembles and  DWIs. Fifth, the EVWI can be calculated using either F1 (Eq. 23) or F2 (Eq. 24). 
Finally, we calculate the VOI using Eqs. 1 and 2. 

s workflow, F1 and F2 using a large ensemble size of 10,000. The results are listed in Table 
6, where s workflow gives a result almost identical to that of F2. This is because the impact of excluding a 
synthetic truth (i.e., an ) from the prior ensemble is very small when the ensemble size is large. The VOIs 
calculated using F1 and F2 are slightly different, for a reason to be discussed later. All three methods estimate the 
VOI with an error smaller than 1%. 
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Method VOI 
 

Error 

Analytical 
 

2.267 - 

s Workflow 
 

2.283 0.71% 

Formulation 1 
 

2.246 0.93% 

Formulation 2 
 

2.283 0.71% 

Table 6 VOI estimate with , , , and an ensemble size of 10,000 for 
the Monte Carlo example with a static model. 

 
Then, a small ensemble size of 50 is used. The VOI calculation is repeated 10,000 times for each method. The 

statistics of the VOI estimates are listed in Table 7, and the probability density functions (PDFs) are plotted in Fig. 
8.14  Both F1 and F2 are shown to produce a VOI estimate with an error smaller than 0.5% on average. F2 leads to a 
smaller standard deviation (SD) of the VOI estimate than does F1. This indicates that F2 is more stable than F1 with 
respect to Monte Carlo sampling for small ensemble size because of s sole use of the prior ensemble for 
calculating EVWI, thereby excluding from that calculation the sampling errors associated with the preposterior and 
posterior ensembles. In contrast, F1 uses both the preposterior and posterior ensembles for the EVWI calculation, 
thereby propagating sampling errors from the preposterior and posterior ensembles. s workflow, the 
resulting range and SD of VOI estimate are larger than in the other two methods, and the PDF includes a long tail to 
the right as shown in Fig. 8, resulting in a larger error for the average VOI estimate. This long tail is induced by the 
exclusion of the synthetic truths from the prior ensemble. This suggests that the impact of excluding the synthetic 
truths from the prior ensemble can be large when the ensemble size is small. In reservoir management, small 
ensemble size is usually used for EnKF, typically 100, as the computational costs increase with the ensemble size. 

 
Method Average 

 
Error SD [Min, Max] 

 
 

2.323 2.47% 0.933 [0, 10.421] 

Formulation 1 
 

2.257 0.44% 0.776 [0, 5.497] 

Formulation 2 
 

2.259 0.35% 0.695 [0, 5.279] 

Table 7 VOI estimate with , , , and an ensemble size of 50 (repeated 10,000 
times) for the Monte Carlo example with a static model. 

 

 
Fig. 8 The PDF of VOI estimate for the Monte Carlo example with a static model. 

 
This example has demonstrated that the three methods give almost equivalent results for large ensembles. 

However, these methods can lead to quite different results when the ensemble size is small. As there are no 
significant computational increases resulting from F2 (Eq. 24) for calculating the VOI from HM when Monte Carlo 
is used, this would be our method of choice. 
                                                           
14 The uncertainty in the VOI estimate is due to the sampling error associated with Monte Carlo method. As discussed earlier, the 
VOI itself is not a distribution but the difference between two expected values. 
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Monte Carlo Example with a Toy Dynamic Model 
This section illustrates how the VOI from HM is calculated. We adopt the decline curve model used by Barros et al. 
(2016a) for modeling oil and water production. The predicted oil and water production rates,  and , 
respectively, are functions of time  and a control (decision) variable ,: 

 
  (27) 

  (28) 

 
where  is the initial oil production rate for ;  is the ultimate water production rate for ;  is 
the water breakthrough time for ; ,  , , ,  and  are coefficients;  is the average of  in all the 
control intervals before ; and  is the Heaviside step function. The water injection rate  is the sum of  and 

. The constants and uncertain model parameters are listed in Table 8. The production life-cycle is 80 months, 
and . We include eight control intervals, and the single control variable  is thus replaced by a 
control vector . That is, when a decision is made at time , it cannot be 
changed over the next 10 time intervals. The upper and lower bounds of  are 10 bbl/mo and 50 bbl/mo, 
respectively. The observations are oil and water production rates at a certain time. In the form of Eqs. 19 and 17, we 
have the distinctions of interest , predicted observations , observations 
(with noise)  , and a forward model to time ,  described by Eqs. 27 and 28. 
 

Constant Parameters  Uncertain Parameters 
 0.1 [ - ]  N(100, 8) [bbl/mo] 
 4 [bbl/mo2]  N(30.5, 3.67) [mo] 
 150 [bbl/mo]  N(132, 6) [bbl/mo] 
 2 [ - ]  N(32, 6) [mo] 
 1.33 [bbl/mo2]    
 70 [$/bbl]    
 10 [$/bbl]    
 10 [$/bbl]    

 0.1 [ - ]    
 8 [mo]    

 
Table 8 Constant and uncertain parameters for the decline curve model. 

 
We use a Gaussian distribution for the reliability of measurements, i.e.,  where 

, with  and  being the SDs of oil and water rate measurements, respectively. For this example, we 

assume that the SD  is a percentage  of the EV of the prior predicted observation (i.e., ) 
for both the oil and water production rates, and set . Model noise is ignored. 

An ensemble size of 100 is used. Realizations are sampled from the prior  (Gaussian distributions listed in 
Table 8) to form the prior ensemble [ , ]. RO is performed over the prior ensemble to identify the 
optimal strategy  (i.e., DWOI) that optimizes the EV over the prior ensemble (Eq. 20). 

The VOI calculation will be for information gathered at time . For a sequential decision making context, the 
information gathered at time  will affect the decisions made only after the time when we gather the information. 
Thus, we care about the value only for the period where decisions are changeable, and the value function should be 
defined as the NPV for that period. For example, decisions that can be affected by information gathered at time 

, are { , }, so we consider the value function for only the period after time . All monetary values 
are discounted to time 0. 

We first do forward modeling to time  with the prior ensemble members and DWOI to generate the realizations 
of the predicted observations [ , ] and then sample one 
realization of measurement noise from  and add it to  to obtain [ , ] which is the 
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preposterior ensemble. For each , we use EnKF to update the prior ensemble to obtain the posterior ensemble 
[ , ] and perform RO over the posterior ensemble to identify the optimal strategy after time  
for the posterior ensemble. Again, using information gathered at time  as an example, the DWI after time 

 is . 
The EVWOI can then be calculated using Eq. 21, and the EVWI using F1 (Eq. 23) or F2 (Eq. 24). The VOI is 

calculated using Eqs. 1 and 2. 
Both F1 and F2 are used to calculate the  defined in Eq. 2. From Eq. 1, . The calculation of  

at time  using our proposed workflow is repeated 100 times for each formulation. The ensembles used in any 
two runs are different. The statistics of the  estimates are listed in Table 9.15 As was found in the previous 
example, the average of the estimates calculated using F1 is close to that of F2; however, the SD of the estimates 
calculated using F1 is much larger than that of F2, due to the small ensemble size. Different VOI estimates can lead 
to different decisions. Taking one of the 100 runs as an example, we get a VOI estimate of $621.4 using F1 and 
$107.6 using F2, even though the same set of realizations is used; if the cost of gathering data and conducting model 
calibration is $150, the decision made based on the VOI calculated using F HM
the decision made based on that using F  In practice,  
because we want to minimize the computational cost. Thus, the formulation which has the higher chance to produce 
a good estimate (i.e. smaller SD in estimate) should be used. 

 
Method Average 

 
SD [Min, Max] 

Formulation 1 
 

64.7 480.3 [-1181.9, 1049.6] 

Formulation 2 
 

58.4 31.5 [-64.6, 148.8] 

Table 9 Statistics of the  for the Monte 
Carlo example with a dynamic model. 

 
We use F2 to calculate the VOI at different times using the same prior ensemble, to answer the following 

questions: (1) If we can conduct the measurements of oil and water production rates only once at some time during 
the production life-cycle (i.e., we can get only a single value of ), when should this be done? (2) How 
much value can be created by the measurements? Repeating the VOI calculation for data gathered at different times 
yields the graph shown in Fig. 9. It indicates that the value of imperfect information with  peaks at time 
30 with a value of $217.5. If the cost of gathering data and conducting model calibration is less than $217.5, we 
should gather data and conduct model calibration at time 30; otherwise, we should not gather data at all. The value 
that can be created by the measurements is the difference between its VOI and cost. For example, if the cost is $118, 
then the created value is $217.5  $118 = $99.5. The VOPI is the upper bound of VOI. Not surprisingly, the graph 
indicates that if we have access to perfect information, we should gather data as soon as possible (between time 0 
and 10) if the information can be obtained at a cost of no more than $674.3. There are sharp drops in both VOI with 
measurement noise and VOPI at time 11, 21, 31 and 41. This is because one more decision in the series of decisions 
of production strategy cannot be affected by the data gathered at these times (Barros et al. 2016a). For example, the 
injection rate decision for the period from time 20 to 30 is made at time 20, so the data gathered before time 20 can 
affect this decision whilst the data gathered after time 20 cannot affect this decision but only the decisions made 
after that. 

 

                                                           
15 See footnote 14. 
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Fig. 9 VOI with  and VOPI at different times for the Monte Carlo example with a dynamic model. 

 
How would different levels of measurement noise impact VOI? To investigate this, we conducted a sensitivity 

analysis of the measurement noise (i.e., the value of ) on VOI. VOI at different times is shown for three values 
of  (1%, 5%, and 9%) in Fig. 10. The smoothness of the curve decreases with increasing measurement noise. 
We believe this is because of the sampling errors associated with sampling the measurement noise. As the 
measurement noise increases, larger sampling errors will be introduced when the measurement noise is sampled 
using the same ensemble size for Monte Carlo method, resulting in larger errors in VOI estimate. Fig. 10 shows that 
VOI increases as  decreases, and that the VOI peaks at time 30 no matter how large  is. This is because 
water break-through will have occurred over the majority of the realizations at time 30, and the water rate data 
gathered at this time provides relevant and material information on the future water production. Thus, we focus on 
VOI at time 30 and calculate it for different values of . The results, shown in Fig. 11, indicate that as 
measurement noise increases, VOI approaches 0 (i.e., the information is immaterial). Because the measurement 
noise tends to be quite small in practice, we consider  only between 0% and 22% for further analysis. The VOI 
estimates are indicated by blue dots in Fig. 12, and the red dashed line is the second-order polynomial trendline 
corresponding to the VOI estimates. The cost of reducing measurement noise is represented by the green solid line 
in Fig. 12, showing that VOI and the cost intersect at . For , the measurement cost is 
greater than the VOI, indicating that paying for a more accurate measure does not add value. For , the 
measurement cost is lower than the VOI. The difference between VOI and cost is shown in Fig. 13. The information 
value increases as  increases until  it reaches 9.1%, corresponding to an optimal value of $105.8 (the red 
dot in Fig. 13). The sensitivity analysis indicates that a more accurate measure does not necessarily create more 
value and that a tradeoff exists between measurement accuracy and costs. 

 

  
Fig. 10 VOI at different times for different levels of 

measurement noise for the Monte Carlo example with a 
dynamic model. 

Fig. 11 VOI at time 30 for different levels of 
measurement noise for the Monte Carlo example with a 

dynamic model. 
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Fig. 12 VOI at time 30 and measurement cost for 

different levels of measurement noise for the Monte 
Carlo example with a dynamic model. 

Fig. 13 VOI at time 30 less measurement cost for 
different levels of measurement noise for the Monte 

Carlo example with a dynamic model. 
 
Monte Carlo Example with a Reservoir Simulation Model 
We use our proposed workflow to estimate VOI from HM for a more realistic case where a reservoir simulation 
model is involved. The reservoir simulation model (a synthetic 2D model) is shown in Fig. 14. Eight injectors are 
placed in line at one end of the reservoir and eight producers in line at the opposite end. The permeability field is 
uncertain and its prior uncertainty is described by a multivariate normal distribution. The prior ensemble consists of 
50 realizations sampled from the prior distribution, 3 of which are illustrated in Fig. 15. 
 

 
Fig. 14 Synthetic 2D model for the Monte Carlo example with a reservoir simulation model. 

 

 
Fig. 15 Three of 50 sampled realizations of the permeability field in md. 

 
We assume that the periods of water pre-flushing, polymer injection and water post-flushing have already been 

set: 1,200 -
water post-flushing. The injection rate is fixed at 15 m3/day for each injector and the producer bottom hole pressure 
is fixed at 200 bars for each producer. At the end of water pre-flushing, the DM needs to decide what polymer 
concentration should be used in each injector for the whole period of polymer injection. Thus, there are totally 8 
control variables. The polymer concentration is bounded between 0 kg/m3 and 6.5 kg/m3. 

Oil and water production rates in each producer will be measured every 240 days during the water pre-flushing 
period. These data can be used for HM and inform the decision on polymer concentration. In addition to oil and 
water production rate data, the DM is considering to gather another type of data: water saturations in the grid-blocks 
circled by the red rings in Fig. 14 by placing saturation measuring devices at these locations. If the devices are 
placed, water saturations in these grid-blocks will be measured every 240 days as well. The questions are: What is 
the value of additional water saturation data? Should the saturation measuring devices be placed? 
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The value function is defined as the NPV with revenue from oil production and costs for water production, water 
injection and polymer injection, i.e., 

 

  (29) 

 
where  is the total polymer injection rate over time step length  and  is the polymer injection cost. The 
parameter values used in this specific example are listed in Table 10. 
 

 220 $/m3 
 47.5 $/m3 
 12.5 $/m3 
 12 $/kg 

 8%  
 365 days 
 30 days 

Table 10  Parameter values for NPV calculation in the Monte Carlo example with a reservoir simulation model. 
 

The measurement noise of oil and water production rate is assumed to be normally distributed with zero mean 
and a SD of 1 m3/day, and the measurement noise of water saturation to be normally distributed with zeros mean 
and a SD of 0.01. Model noise is ignored. 

VOI is calculated using our proposed workflow combined with EnKF and EnOpt. The resulting VOIs for rate 
data only, saturation data only, and both rate and saturation data, and VOPI are listed in Table 11. 

 
Data Type Rate Saturation Rate and Saturation 

 
Perfect Information 

VOI 5] 
 

3.10 3.36 4.11 6.12 

Table 11 VOI estimates for Monte Carlo Example with a Reservoir Simulation Model. 
 
It can be see that the values of rate data and saturation data are very close to each other. Although the saturation 

data has a value of $3.36 5 when it is considered individually, it adds a value of only $1.01 5 (= $4.11 5  
$3.10 5) in addition to rate data. This indicates that VOI is not additive (Samson et al. 1989). The VOI analysis 
informs the DM that he/she should not gather saturation data in addition to rate data if the cost of placing saturation 
measuring devices is greater than $1.01 5. 
 
Discussion and Conclusions 
This paper has introduced a workflow for calculating VOI from HM and that is consistent with the original 
definition of VOI in the decision sciences. The workflow employs ensemble-based methods and Monte Carlo 
sampling. Two formulations (F1 and F2), both of which are consistent with VOI analysis, can be used to calculate 
the EVWI. In the limit where the ensemble size approaches infinity, the EVWIs calculated using these two 
formulations are identical. However, the numerical results may be different, and consequently different VOI 
estimates will be calculated when the ensemble size is small. The VOI calculated using F2 is less sensitive with 
regard to ensemble size than is F1. F2 is thus our method of choice for calculating the VOI from HM using Monte 
Carlo method. 

F s workflow. We noted that s workflow, which relies on twin experiments, 
is inconsistent with VOI analysis because VOI is a value, not a distribution. Nevertheless, two small modifications 
to s workflow will make it consistent with VOI analysis and consequently, equivalent to F2. 

A decision tree was used to illustrate the implementation of the general workflow for VOI analysis in HM 
contexts  The use of decision trees provides 
clarity in communicating the detailed steps for VOI analysis. 

We conducted a sensitivity analysis of the impact of different levels of measurement noise. Due to the non-
uniqueness inherent in the HM inverse problem, a zero measurement noise will not result in perfect information 
about future production. As the measurement noise increases, VOI is reduced; and once measurement noise exceeds 
a threshold, the gathered production data will be immaterial and thus worthless. The sensitivity analysis thus 
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confirmed that applying the ensemble-based approach for HM in a VOI framework is consistent with classical VOI 
analysis. The sensitivity analysis also illustrated that the value of a measure (its VOI less its cost) does not 
necessarily increase as measurement accuracy is improved. 

Two Monte Carlo examples demonstrated the application of F2 for VOI assessment. The first example analyzed 
the optimal timing of conducting data measurement, and the second example investigated the value of obtaining 
additional type of data. 

Although we used EnKF for HM (Bayesian updating) and EnOpt for RO (decision making), the proposed VOI 
workflow could employ any Bayesian updating method or optimization method. The performance of the calibration 
method can affect the accuracy of VOI assessment. EnKF is derived from the Kalman filter, which is designed for 
Gaussian distributions. Thus, any inherent non-Gaussianity (e.g., value truncation) can introduce errors in Bayesian 
updating and consequent errors in the VOI calculation. When VOI is calculated using Monte Carlo method, the 
number of realizations used to represent the probability distributions affects the accuracy of the VOI calculation. We 
used an ensemble size of 100, which has been regarded as a reasonable compromise between fairly representing the 
probability distribution and limiting computational costs for EnKF. However, given that Bickel (2012) showed that 
more than 1,000 realizations are required for a good estimate of VOI in a case where only one uncertain quantity is 
involved, an ensemble size of 100 is unlikely to provide an accurate assessment of VOI from HM. The accuracy of 
VOI estimate using EnKF and EnOpt should be further investigated in future reseach. 

A significant constraint on the routine use of VOI in the HM context is its high computational cost (Barros et al. 
2016a). An ensemble size of , would entail  ensemble-based HM and optimizations over all  realizations. If a 
production model needs hours to run, as in many real cases, the CPU time for assessing the VOI for observations 
obtained at a certain time will be years. Thus, using parallel computing for VOI calculation can significantly reduce 
the waiting time because both the EnKF and RO parts of the workflow can be done in parallel across realizations. If 
parallel computing is unavailable, one possible approach is to use fast proxy models (e.g., an upscaled model or a 
decline curve model) for production modeling. If this can reduce model run time from hours to seconds, the CPU 
time would be reduced from years to hours, making it acceptable for a practical setting. Another possible solution is 
to reduce the number of realizations using an efficient discretization method (Bratvold and Thomas 2014). This 
works well when only a few uncertain quantities are involved. However, this approach can also be computationally 
very expensive when numerous uncertain quantities are involved because the number of discretization points 
increases exponentially with the number of uncertain quantities. Barros et al. (2016b) reduced the number of 
realization needed using clustering techniques to select representative models from an ensemble. 

The computational cost is even higher for a sequential decision making context. Because of this, we only 
illustrated VOI assessment for the case with only one decision point. Although Barros et al. (2015b) has extended 
their workflow to incorporate sequential decisions using the closed loop reservoir management (CLRM) approach, 
we argue that CLRM is a myopic or naïve decision policy where the uncertainties associated with current available 
data is considered but the uncertainties associated with future data is not. Fig. 16 illustrates the decision tree 
representation for CLRM. The advantage of CLRM is that it greatly simplifies the structure of a sequential decision 
making problem and consequently, requires less computational cost for solving the problem. Its significant 
drawback is that it does not reflect the full structure of a sequential decision making problem and thus, may lead to a 
sub-optimal production strategy. Fig. 17 illustrates the decision tree representation for the full structure of a 
sequential decision making problem. The full structure explicitly considers both the uncertainties associated with 
current available data and that with future data, i.e., it allows for learning over time. Therefore, the current decision 
does not depend on only the uncertainties that a decision maker have learnt so far but also the uncertainties that the 
decision maker will learn in the future. Solving the fully structured decision tree gives the optimal production 
strategy. Per the strict definition of VOI, it is referred exclusively to that associated with the optimal decision policy 
(i.e. the solution of the fully structured decision tree). The VOI assessed using the CLRM approach is a special case 
and only for the CLRM production strategy. The VOI associated with the CLRM production strategy may be lower 
than the generally defined VOI (i.e. the VOI associated with the optimal production strategy). Therefore, using the 
CLRM approach is a simplification of solving a sequential decision making problem but not a replacement. Solving 
for the optimal production strategy may create more value than the CLRM production strategy but requires more 
computational cost. 
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Fig. 16 Decision tree representation for CLRM. 

 

 
Fig. 17 Decision tree representation for the full structure of a sequential decision making problem. 

 
Another significant constraint is the difficulty in Bayesian inference when a large number of uncertain 

parameters (e.g., the porosity and permeability in each grid block of a reservoir simulation model) is involved. 
Although many publications have shown promising results of updating a large number of uncertain parameters using 
EnKF, it may lead to statistic bias and consequently reduce the accuracy of VOI calculation. Any other Bayesian 
updating methods, e.g., the ensemble smoother (Skjervheim and Evensen 2011) or Markov-chain Monte Carlo 
methods (Oliver et al. 1997), can be adopted into our proposed workflow. Thus, a possible direction for further 
research is to investigate the impact of different updating methods on VOI estimate. 

Many producing fields and most new fields gather some types of data (e.g., water, oil, and gas production rate 
and well bottom-hole pressure) for monitoring and other purposes. VOI analysis plays no role for these types of 
measurements, because the data already have been or definitely will be gathered. However, VOI analysis is very 
relevant and useful for other types of costly data, such as 4D seismic surveys. 

Although issues remain in the context of developing a broad and deep understanding and routine application of 
the concept, we remain optimistic about the value of VOI analysis in the O&G industry.  
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