EOR Screening Including Technical, Operational, Environmental and Economic Factors Reveals Practical EOR Potential Offshore on the Norwegian Continental Shelf

SPE-200376-MS,

first presented at the 2020 SPE IOR Conference

P. Craig Smalley & Ann H. Muggeridge

Imperial College London Sølvi S. Amundrud, Mariann Dalland, Ole S. Helvig, Eli J. Høgnesen, Per Valvatne & Arvid Østhus

Norwegian Petroleum Directorate

EOR Screening on NCS

20th October 2020

20th October 2020

Imperial College London

Overview

- 1. Why an enhanced screening tool?
- 2. Overview of screening tool
 - Operational, environmental and economic screening
- 3. Results for 85 reservoirs on Norwegian Continental Shelf (NCS)

20th October 2020

Imperial College London

Motivation

NPD needed to estimate, for NCS, the EOR opportunity and rank the opportunities to enable deeper study of most attractive ones

2018: screening of technically recoverable resources

- SPE-190230-MS, presented at IOR Norway in 2018

But were these resources <u>practically</u> recoverable?

- > Operationally feasible
- > Commercially attractive
- > Environmentally acceptable

Solution: An enhanced screening tool

- Most screening tools are 'technical'
 - 1. Compare the reservoir, rock and fluid properties with suitable properties for each EOR process
 - 2. Calculate screening score
 - 3. Eliminate unsuitable processes
 - 4. Estimate incremental recovery based on screening score
- Economics evaluated afterwards
 - Costly and time-consuming detailed study
 - Not practical if many fields

Technical screening factors used previously:

- Temperature
- Oil API gravity and viscosity
- Oil acidity and wetting behaviour
- Permeability
- Reservoir thickness
- Fracturing
- Heterogeneity
- Clay content and clay type
- Formation water and injected water salinity
- Remaining oil
- Current recovery process

20th October 2020

20th October 2020

Construction of advanced screening framework

For Norwegian Continental Shelf

20th October 2020

EOR processes considered (as focus on offshore)

- HC miscible/immiscible WAG
- Nitrogen and flue gas WAG
- CO₂ miscible/immiscible WAG
- Alkaline

Imperial College

London

- Polymer
- Surfactant, Surfactant/polymer
- Low salinity water injection,
- Low salinity/polymer

- Smart Water
 - modified water ionic composition
- Thermally activated polymers (TAP)
 - deep-acting
- Gels
 - near-well treatments
 - colloid dispersion gels, linked polymer solutions

20th October 2020

Imperial College London

Operational screening

- Offshore installation
 - Installation lifetime, type, location
- Topsides facilities
 - Injection equipment, processing equipment, materials (CO₂ resistance)
- Wells
 - Spacing, position, materials
- Injectant access
 - Gas supply

Each assigned a screening score

- 0 to 1
- for each process in each reservoir

Installation lifetime criterion

Logic:

 if there is less remaining lifetime to achieve the full EOR increment, the project is less likely to be successful

20th October 2020

EOR Screening on NCS 20th October 2020

Imperial College London

Topsides Injection and Processing

- Process-specific requirements
 - literature review
 - NPD experts

Imperial College London Environmental screening

How is project approval affected by perceived environmental acceptability of process?

- **Injectant hazard** if spilled
- **Emissions** Chance of emissions to sea
 - related to the current water-handling system type
- **CO₂ footprint** net effect on CO₂ emitted per volume of oil produced
 - Power used => CO_2 emitted
 - CO₂ storage potential

Economic screening

- Net Present Value (NPV): industry standard measure of project materiality
 - Quantifies the time value of money
 - Estimates overall stakeholder value
- Internal Rate of Return (IRR): standard measure of the average annual return on the cash investment.
 - A "good" IRR reflects a sufficient risk-adjusted return on cash investment given the nature of the investment
- Both calculated from predicted cash flow
 - = Annualized production volume × unit value Capex Opex

Incremental production profile

20th October 2020

Imperial College London Screening Overview

EOR Screening on NCS 20th October 2020

Results: application to the Norwegian Continental Shelf

Operational score > 0.5

Environmental score > 0.7

Economic score > 0.1

• NPV > 0, IRR > 7%

Field-specific information

 supplied by field operators via a purpose-built questionnaire

Overall NCS Volumes

Assumption: only the best (highest increment) process applied in each field

Imperial College London **Total opportunity** set by process

400

300

200

100

0

incremental volume (MSm3)

Includes competing opportunities – cannot be added

Summary

New framework for integrating operational, environmental and economic criteria into EOR screening

- Speeds up screening of large portfolios
- Opportunities that survive are more likely to be realized
- Will help focus subsequent effort on the most promising EOR opportunities

Applied to the NCS:

- 683 technically viable opportunities reduced to practically viable 372 ones
- Overall expected incremental volume reduced from 698 to 282 MSm³
- Still a large prize
- Further 62 MSm³ if environmentally benign EOR chemicals could be formulated

Acknowledgements

We are grateful to

- the Norwegian Petroleum Directorate for permission to publish
- the NCS field operators for providing field specific input data

Thank you for listening!

