Early Or Regret

Screening for EOR and Estimating Potential Incremental Oil Recovery on the Norwegian Continental Shelf

SPE190230

Craig Smalley & Ann Muggeridge

(Imperial College London)

Mariann Dalland, Ole Helvig, Eli Høgnesen, Mari Hetland & Arvid Østhus

(Norwegian Petroleum Directorate)

Overview

- Background
- New EOR screening methodology
- Results: screening applied to the Norwegian Continental Shelf (NCS)
- Conclusions and implications

NORWEGIAN PETROLEUM DIRECTORATE

Background What is a Screening Tool?

- Fast method for ranking opportunities
 - 1. Which fields are suitable for EOR?
 - 2. Which processes might work in each field?
 - 3. How much incremental oil could we recover?
 - 4. Perform detailed technical, environmental, operational and economic assessment on top candidates
- Why?
 - Too costly and time-consuming to fully investigate each field initially
 - Further reservoir characterisation
 - Laboratory studies
 - Detailed numerical simulation

Background Objectives

- Develop simple transparent screening methodology and supporting toolkit
- Apply to the largest fields on the NCS
- Determine applicability of various IOR/EOR methods:

o which methods would work in which fields?

• Estimate increased technical recovery potential by field and in total

Processes considered:

Hydrocarbon miscible gas/WAG Hydrocarbon immiscible gas/WAG Nitrogen and flue gas/WAG CO₂ miscible/WAG CO₂ immiscible/WAG Alkaline Polymer Surfactant Surfactant/polymer Low salinity Low salinity/polymer TAP (thermally activated particles) Gels

Background Desired comparability with recent study on the UKCS

McCormack et al. (2014). Maximising Enhanced Oil Recovery Opportunities in UKCS Through Collaboration, SPE 172017

Screening Methodology Screening Process

Screening Methodology Screening criteria: > 30 publications reviewed

Screening Methodology Impact of current process

- Three types of process relationship
 - Second process is compatible with first and full increment expected (white)
 - Processes technically compatible but reduced increment (orange)
 - Processes not compatible (red)

First process → Second process ↓	Waterflood	HC miscible WAG	HC immiscible WAG	Nitrogen/flue gas WAG	CO2 miscible WAG	CO2 immiscible WAG	Alkaline	Polymer	Surfactant	Surfactant/polymer	Low salinity	Low salinity/polymer	ТАР	Gels	Blowdown
Waterflood															
HC miscible WAG															
HC immiscible WAG															
Nitrogen/flue gas WAG															
CO2 miscible WAG															
CO2 immiscible WAG															
Alkaline															
Polymer															
Surfactant															
Surfactant/polymer															
Low salinity															
Low salinity/polymer															
TAP															
Gels															
Blowdown															

Screening Methodology Screening scores for individual criteria

DIRECTORATE

- Represent how well the field properties meet each screening criterion for each recovery process
- Range between 0 (process not viable) and 1 (process fully viable)
- Calculated via four threshold values: Min, Max, ULimit, LLimit
 - Value between Min and Max. Optimal: screening score = 1
 - Value outside LLimit and ULimit.
 - Hard thresholds. Process not possible: score = 0
 - Soft thresholds. Process technically viable, but strongly disadvantaged: score assigned a low but non-zero value
 - Value between LLimit-ULimit but outside Min-Max. Process is viable but not optimal: score assigned on a sliding scale

Screening Methodology Overall suitability scores for each process

- Scores are weighted, summed and normalised to give an overall suitability score
- Dashboard shows results for individual reservoirs

Field A: Reservoir 1	SCREENING CRITERIA																			
	Lithology	Depth	Pressure	Temperature	API gravity	Viscosity	Crude acidity	Wetting behaviour	Porosity	Permeability	Thickness net	Fracturing	Hetrogeneity	Clay content	Clay type	Salinity fm water	Salinity inj water	Remaining oil	Current process	Suitability score
Units		m	bar	С		сP			frac	mD	m					mg/l	mg/l	frac		
Field Data	Sst	3200	350	130	41	0.4	High TAN	Weakly oil wet	0.2	175	80	No fracture flow	Some layering	10-15% clays	Kaolinite, Smectite	120000	35000	0.80	Wflood	
Recovery processes																				
HC miscible WAG		1	1	1	1	1			1	1	0.6	1	1]				1	1	0.9
HC immiscible WAG		1			1	1				•	0.6	1	1					1	1	0.9
Nitrogen/flue gas WAG		1	0.2	0.6	1	1				1	0.6	1	1					1	1	0.9
CO2 miscible WAG		1	1	0.7	1	1			1	1	0.6	1	1					1	1	0.9
CO2 immiscible WAG		0.4	0		1	1		_			0.6	1	1		_			1	1	0
Alkaline	1	0.5			0.8	1	0.5		1	1		-		0.5		0.1		1	1	0.7
Polymer	1			0.1	1	0			1	1	1	1	1	0		0		1	1	0
Surfactant	1			0.4	1	1			1	1	1		1	0		0.1		1	1	0
Surfactant/polymer	1			0	1	0			1	1	1		1	0		0.1		1	1	0
Low salinity	1			-		1	0.5	1		1		1	1	1	1	1		1	1	1.0
Low salinity/polymer	1			0.1	1	0	0.5	1	1	1	1	1	1	0.5	1	0.7		1	1	0
ТАР	1			0.7		1			1	1	1	1	0.5			1	1	1	1	0.9
Gels				05		1				1		1	1				03	1	1	0.8

1 (green): Optimal process with maximum recovery increment. 0 (red): Unsuitable with zero recovery increment. Intermediate: Technically feasible but with reduced recovery increment

Screening Methodology Recovery increments

- Derived from analogues
 - Based on literature review, including field and lab data
 - Estimated lower, mid and upper increments
 - based on variability in the analogue data
 - Scaled by screening score
 - Capped by theoretical maximum recovery factor
 - Estimates of microscopic displacement and macroscopic sweep efficiencies

Recovery processes	Theoretical maxima				
Waterflood	0.70				
Hydrocarbon miscible gas/WAG	0.70				
Hydrocarbon immiscible gas/WAG	0.71				
Nitrogen and flue gas/WAG	0.70				
CO ₂ miscible/WAG	0.70				
CO ₂ immiscible/WAG	0.71				
Alkaline	0.73				
Polymer	0.77				
Surfactant	0.73				
Surfactant/polymer	0.86				
Low salinity	0.77				
Low salinity/polymer	0.81				
ТАР	0.84				
Gels	0.77				

Screening Methodology The analysis

- 53 studied reservoirs from 27 NCS fields

 wide range of maturity
- All data imported into toolkit
- Processed as a batch
- Results stored in a worksheet
- Plotted and interrogated using pivot tables and charts

-600

Note: $1 \text{ Sm}^3 = 6.29 \text{ barrels}$

Results Field by field analysis

• Estimated a view of the increment each process might add in each reservoir

Results Overall technical potential incremental recovery

• Sum the top processes at the <u>field</u> level

o the selected EOR process may be sub-optimal in some reservoirs,

o operational simplicity leads to a higher chance of successful implementation

DIRECTORATE

Results Application of multiple processes

- Identify
- 1. best EOR process
- 2. the next best compatible process, and then the next....
- >Optimistic view of volumes
 - Operationally difficult to implement multiple processes in one field
- ► Better view of applicability of each process

- HC miscible gas/WAG
- CO2 miscible/WAG
- Low salinity/polymer
- Surfactant/polymer
- Gels
- Low salinity
- Bright Water
- HC immiscible gas/WAG
- Surfactant
- Polymer

Results Geographical analysis

- Clusters of similar opportunities revealed
- Could provide economies of scale
- Tampen area: various processes
- Utsira High: Low salinity (or surfactant) with polymer
- Chalk fields: Miscible WAG

Conclusions and implications

>Updated screening methodology:

- More criteria; hard and soft thresholds; sliding score scales; criterion weighting
- ≻~600 million Sm³ technical potential in the 27 analysed NCS fields
 - Top processes: low salinity/surfactant + polymer; miscible HC/CO₂ injection
- >NPD able to advocate focused EOR technical studies, including field pilots
 - Such pilots are important in verifying process feasibility:
 - provide more analogue data for screening

Future work:

• Explicit incorporation of economic, operational and environmental criteria

EAGE European IOR Symposium 2019

- April 8th-10th
- Pau Pyrenees
- Main sponsor: Total

• Deadline for Abstracts: September 2018