

Simulation Tools for Predicting IOR Potential on the Norwegian Continental Shelf

Aksel Hiorth

A. Lohne, O. Nødland, A. Stavland, E. Jettestuen, O. Aursjø, J. L. Vinningland,

J. Nossen, J. Sagen, T. Sira, ...

IOR Norway 2018 UiS 26. April 2018

The National IOR Centre of Norway

EOR-METODER 27 felt, 7 metoder:

Upscaling

Polymer @ NCS

IOR Centre of Norway

- Environmental concerns
- Produced water
- High flow rates
 - Mechanical degradation
- Simulation models
 - Design & potential

Opportunities

- Improve sweep
- Increased oil production
- Less water injected

Reports/2014/Chapter-2/

Polymer solutions display complicated rheological behaviour

IORCoreSim – Polymer from core to field IF2 UIRIS

We understand the main behavior of polymers

- Core scale experimental procedures
- Models to interpret
- Large scale behavior "simple"
 - Well model needs to be improved in simulators
 - Reservoir behavior "simple" shear thinning

Refs:

Lohne, A., Nødland, O., Stavland, A. and Hiorth, A. [2017] *A model for non-Newtonian flow in porous media at different flow regimes*. Comp. Geosc., 1–24. Nødland O., Lohne, A., Stavland, A. and Hiorth, A. [2018] *A model for non-Newtonian flow in porous media at different flow regimes*. EAGE 2017 (sub to TiPM).

Low salinity @ NCS

Challenges

- Mechanisms
- Cost of producing water
- Simulation models
 - Design & potential

Salinity, pH, surface potential is important

The National IOR Centre of Norway

The National

What about the Upscaling ??

- 10% Additional on Core Scale → maybe 2-3% field?
- If it works, why care about the mechanisms?
 - Field vs core pH?
 - Field vs core surface potential?

IORCoreSim - Synthethic model

Field pH depends on CO₂ in oil & calcite IF2 IRIS

The National IOR Centre of Norway

t=300 days

Field pH depends on CO₂ in oil & calcite IF2 IRIS

The National IOR Centre of Norway

t=500 days

Field pH depends on Co2 in oil & calcite IF2 IRIS

The National IOR Centre of Norway

t=650 days

Field pH depends on CO₂ in oil & calcite IF2 IRIS

t=1400 days

IOR Centre of Norway

Field pH depends on CO₂ in oil & calcite IF2 IRIS

t=2850 days

IOR Centre of Norway

Chlorine Concentration

Surface Potential

рН

(900days) pH, salinity and surface potential - different speeds IOR Centre of Norway

Field Recovery

The National IOR Centre of Norway

Field response varies greatly

- Mechanisms important
- Pore surface wetting vs production

Summarize

- Field design of polymer
 - Tools and experimental procedures ready
- Field design of Low Sal
 - Too much lab work and too little modelling – we are closing the gap
 - Need pore scale understanding

The National IOR Centre of Norway

Acknowledgement

