Applied Statistics for Educational Researchers (DUH165)

This course is organized in several workshops and will introduce in structural equations models with growth curve modeling and autoregressive dynamic structural equations models as special applications. We will use the software packages Mplus and R.

Course description for study year 2023-2024. Please note that changes may occur.


Course code




Credits (ECTS)


Semester tution start


Number of semesters


Exam semester


Language of instruction



This PhD course will introduce educational researchers to SEM and LGC and enable the successful candidate to apply those analyses in her own research using the software package Mplus and/or R.

Course leader: Ulrich Dettweiler (UiS)

Instructors: Ulrich Dettweiler (UiS), Knud Knudsen (UiS), Thormod Idsøe (NUBU, UiS), Lars-Erik Malmberg (Oxford University)

Learning outcome

By completion of this course, the PhD candidate will have gained the following:


    • of measurement theory
    • a good understanding of multiple regression and factor analysis
    • a good understanding of hierarchical structures in data, and how to address them in analysis
    • a good understanding of SEM and LGC in complex survey data


    • running SEM and LGC analyses in MPlus and R (optional)
    • preparing results of such analyses for publication

General competences:

    • being able to choose and apply the right analyses for the given data
    • developing advanced strategies for further research

Required prerequisite knowledge


Recommended prerequisites

The students are expected to

  • have the software package Mplus ready installed on their personal computers (demo-version only if the candidate is experienced with R)
  • know the data structure of their projects and the research questions. and get themselves acquainted with MPlus and/or R prior to the course so that they master to prepare the data for import in Mplus,
  • know some basic Mplus syntax (chapters 1 + 2 in Muthén & Muthén),
  • have some datasets prepared in the right format (.dat) for MPlus or .csv in R.


Form of assessment Weight Duration Marks Aid
Paper 1/1 Passed / Not Passed

Evaluation will be based on the active participation and analyses performed in group work, presented in a brief paper.Coursework requirements: Active participation in lectures and seminars at the workshop. Self-study. The students’ workload will be approximately 150 hours of work.

Coursework requirements

80 % attendance
At least 80 % attendance in lectures and seminares.

Course teacher(s)

Course teacher:

Thormod Idsøe

Course coordinator:

Ulrich Dettweiler

Course teacher:

Knud Knudsen

Method of work

Seminar: In the seminar, we will introduce CFA and SEM and see how Latent Growth Curve modelling can be understood as an extension of SEM with intercepts and/or slopes being modelled as latent variables, first as an unconditional latent curve model. We will then look at conditional Latent Growth Curve models (including mediation models, cross-lagged models, hierarchical/multilevel models), and comparison of (latent) groups with different approaches of testing measurement invariance, also in the Bayesian SEM framework. This will be extended to Dynamic Structural Equation Models with autoregressive slopes (DSEM), i.e. accounting for the influence of the respective previous time points on the outcome variable (time-lagging). Those models are important to analyze intensive longitudinal data, where many observations are nested in individuals. In contrast to latent growth modelling, borrowing logic from time-series analyses, DSEM is interested in the dynamics over time, in terms of autoregressive associations between the same variable at Times T (concurrent time-point) and T-1 (the previous time-point), and cross-lagged associations between variables between T and T-1. Such models are possible to implement using Maximum Likelihood with user specified lagged variables. More complex models (e.g., multiple random slopes) are possible to implement using the Bayesian estimator in Mplus.

The working format is a blending of lectures, group discussions, and hand-on analyses in Mplus/R.

Tutors: Lars-Erik Tutors: Knud Knudsen (UiS), Thormod Idsøe (NUBU), Ulrich Dettweiler (UiS), Malmberg (Oxford University)

Overlapping courses

Course Reduction (SP)
Advanced Statistics for Educational Researchers: Analyzing Structural Equation Models and Latent Growth Curves w/ MPlus (DSP165_1) 5

Open for

International and local students enrolled in a doctoral program. Max. 25 participants. WNGER II students will be prioritized up to a quote of 10.

Course assessment

There must be an early dialogue between the course coordinator, the student representative and the students. The purpose is feedback from the students for changes and adjustments in the course for the current semester.In addition, a digital course evaluation must be carried out at least every three years. Its purpose is to gather the students experiences with the course.


The syllabus can be found in Leganto