Part I: Experimental basis of quantum mechanics. The Schrödinger equation. The wave function as probability amplitude. The uncertainty principle. Energy levels and stationary states. Solution of the Schrödinger equation - quantum numbers. Penetration of barriers. Harmonic oscillator.
Part II Atomic Physics and the hydrogen atom. Bohr's atomic model. The Pauli principle and electron spin. The periodic system.
Part III Physics and statistical physics of solids. Molecules and simple rotation and vibration levels. Band theory for metals. Semiconductors. X-ray spectra.
Part IV Nuclear Physics and Atomic nucleus. Radioactivity. Nuclear Fission. Nuclear fusion.
Part V Elemental Particles: Bosons and fermions. Mesons, baryons. Leptons, quarks and photons. The standard model and its development. Higgs particle.
Note that the exam will be given in the language in which the subject is being taught.
Learning outcome
After completing the course, the student must: K1 Have a good understanding of fundamental concepts in quantum mechanics, and F1 be able to convey its central experimental and theoretical results. In addition, K2 have a broad understanding of concepts and methods of solid state, atomic, nuclear and particle physics, including semiconductors, atomic spectra, the periodic table, radioactivity and the standard model of particle physics. Finally, the student must F2 be able to complete simple, illustrative calculations within these areas of physics.
The faculty decides whether early dialogue should be conducted in all or selected groups of courses offered by the faculty. The purpose is to gather feedback from students for making changes and adjustments to the course during the current semester. In addition, a digital evaluation, students’ course evaluation, must be conducted at least once every three years. Its purpose is to collect students` experiences with the course.