Skip to main content

What does it take to succeed with the energy transition?

Green transition and sustainable development is all about using resources smarter and more efficiently. The researchers in the ENSYSTRA project seek to accelerate the transition to enable a more integrated mix of renewable energy.

Publisert: Endret:
Ensystra - Energy Systems in Transition
ENSYSTRA

ENergy SYStems in TRAnsition Innovative Training Network

UiS researchers

3 Ph.Ds 2 Professors 1 Associate Professor

Duration

2017–2021

Financed

Horisont 2020 Innovative Training Networks (ITN) in the Marie S. Curie programme

The transition from an energy system based on fossil fuels to a system based on an energy mix that emits significantly less CO2, is strongly dependent on increased societal awareness.

Mohsen Assadi , Professor in Energy Transition at the University of Stavanger
ABOUT THE PROJECT

How can industrial decarbonisation be achieved in Northern Europe?

The technology is already in place, now the politicians need to take action.

The slow-moving development towards sustainable energy systems is not due to lack of technological solutions. It is rather economic, political and social factors that are to blame. Providing solutions that help the transition to move forward, requires close collaboration between engineers and social scientists. Only then can we avoid solutions that work technically but are not economically viable or socially acceptable.

Six UiS researchers participate in a research collaboration between six European universities and numbers of industry partners to educate highly qualified energy experts with the aim to provide Europe with more environmentally friendly energy systems. The goal is to find the most successful solution for developing a society with almost one hundred percent renewable energy. Energy and emission intensity of different pathways will be explored with the help of techno-economic and mathematical models. The findings will help in designing a more efficient and resilient energy system for the future.

The objective of this ENSYSTRA project is to identify the different pathways in which decarbonisation of the integrated energy system can be achieved.

Research Group

51832010
Institutt for energi- og petroleumsteknologi
Professor
51831508
Institutt for medie- og samfunnsfag
Instituttleder
51832534
Institutt for energi- og petroleumsteknologi
Førsteamanuensis
51832841
Institutt for energi- og petroleumsteknologi
Stipendiat
Institutt for medie- og samfunnsfag
Stipendiat
Institutt for energi- og petroleumsteknologi
Stipendiat
Ph.d. projeCt

Energy efficiency and waste heat recovery

Abhinav Bhaskar studies the techno-economic feasibility of implementing innovative low-carbon production technologies with focus on hydrogen, to reduce emissions from the industries in the North Sea Region.

Norwegian electricity can be the key to the future hydrogen society.

The world needs to decarbonize energy intensive industries – like iron and steel, chemicals and cement – that use fossil fuels as a source of high temperature heat and as chemical feedstock. Industries consume one-third of the global primary energy and are responsible for a quarter of the global greenhouse gas emissions. Innovative technologies and policies are needed to address the challenge.

Hydrogen could be one of the alternatives to fossil fuels used in the industries. Hydrogen can either be produced from natural gas or through electrolysis of water. Norway has access to cheap natural gas and cheap electricity and could be an important exporter of hydrogen. Bhaskar looks at the important role Norway can have in decarbonizing energy-intensive industries in the EU.

The aim is to develop a bottom-up technology rich model to assist industries and policy makers in making informed decisions.

Ph.D. Student: Abhinav Bhaskar
Supervisor: Mohsen Assadi
Partners: Chalmers University of Technology

PH.D. PROJECT

Development of a real-time optimisation solution for dispatchable energy supply units

Qian Zhang developes solution which makes it easier to integrate distributed generation, such as solar and wind energy, in the future electricity grid.

Energy from sun will be an important ingrediens in the future energy mix of north europeans.

The decarbonisation of the energy industry, and the power sector in particular, plays a major role in the transition towards a low-carbon economy. The North Sea region, which is the focus of the ENSYSTRA project, is expected to have the majority of its electricity demand supplied by solar and wind in 2050. But due to the variability of sun and wind, the grid integration of solar and wind resources is a major challenge.

This research project looks at developing a real-time optimisation model to manage variable solar and wind electricity generation. Qian Zhang will use artificial intelligence-based methods to better forecast this variable renewable energy generation and facilitate its integration into the future electricity grid. A real-time optimisation model could help policymakers as well as system operators for electricity, better understand these challenges and make evidence-based decisions on the short-term planning and dispatch of electricity.

Ph.D Student: Qian Zhang
Supervisor: Mohsen Assadi
Partners: ARGE Netz, Scottish Power Energy Networks

PH.D. PROJECT

Policy framework interactions for cross-border cooperation in energy systems transitions

Benjamin Silvester explores how Norwegian hydropower can be used as large scale storage option for the European integrated energy system.

Norwegian hydropower can have an important role in the European energy system in the future.

Europa has a common energy system consisting of different national energy systems. In transitioning towards more sustainable energy systems, cooperation among state actors need to increase. This research project explores how national and international policies and framework conditions for the cross-border cooperation in energy systems transitions can interact. As a case study, this project will look at the utilisation of Norwegian hydropower as a battery for systems integration in a European context, analysing the policy and framework conditions necessary for such an utilisation. Benjamin Silvester will analyse different levels of government policies and stakeholders with the aim of identifying barriers and opportunities for system integration and battery usage. The project will have great value for understanding the behaviour of national energy systems as well.

Ph.D. Student: Benjamin Silvester
Supervisor: Oluf Langhelle
Partners: Statkraft Sverige, Universitetet i Edinburgh

More about energy

UiS EREE - Research Group for Energy, Resource and Environmental Economics

Researchers within Energy, Resource and Environmental Economics from the UiS Business School and the Department of Safet...

Theme 1: Mobile and immobile oil and EOR methods

Theme 1 focuses on understanding, modeling, and upscaling the microscopic and macroscopic displacement efficiency when v...

The National IOR Centre of Norway

The National IOR Centre provides solutions for improved oil recovery on the Norwegian continental shelf through academic...

Structural Geology

Structural Geology is the study of tectonic deformation. We focus on the deformation of the upper crust and how it affec...

Stavanger AI Lab

A node for research, innovation and education in artificial intelligence at University of Stavanger (UiS).

Smart Water

Smart Water for enhanced oil recovery is a research field at UiS.

Smart sustainable cities research network

This research network performs interdisciplinary research for smart sustainable urban development and collaborates close...

Smart city research

Creating a smart city requires joint efforts of city planners, technologists, energy experts, social scientists, artists...

Provenance Studies

Provenance research tracks the transport routes of sediment. Such research is done for various reasons, such as paleogeo...

Light detection and ranging

Light detection and ranging (lidar) research focus on the planning and collection of lidar data as well as the processin...

Geosciences

Geosciences is an important expertise are within the energy sector, environment, construction among others.

Geophysics

Geophysics uses measurements of physical quantities to make inferences about the geological properties of the Earth and ...

Geographic Information Systems

Geographic information science (GIS) research focuses on the analysis of spatial relationships, defining uncertainty, an...

Digital drilling

AI and machine learning techniques offer reliable solutions to transform data into valuable knowledge that can be applie...

Decision and data analytics

Value can only be created through our decisions. Uncertainty is inseparable from all significant decisions. You can’t ma...

Applied AI and machine learning for energy and petroleum engineering

Due to an increase in the amount of data available through technological advancements, AI and machine learning approache...

Applied AI and Digitalization in Drilling

The Applied AI and Digitalization in Drilling Group at IEP, Department of Energy and Petroleum Engineering at the Univer...